KAJIAN EKOLOGI EKONOMI PENGEMBANGAN BUDIDAYA RUMPUT LAUT DI KEPULAUAN SERIBU (STUDI KASUS DI GUGUSAN P.PARI)

OLEH:
BESWENI

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2002
ABSTRAK

BESWENI. Ecological and Economic Analysis of the Seaweed Aquaculture Development in the Seribu Islands: Case Study in the Pari Islands. Under Supervision of Dietriech G. Bengen (Chairman) and Akhmad Fauzi (Member).

The main objectives of this research are: (1) to analyze land suitability of seaweed aquaculture in Pari Island; (2) to analyze the linkage between socio-ekonomic characteristics of the seaweed farmers and their bio-physical land (environmental) characteristics; (3) to-analyze bioeconomic effiency of seaweed culture; and (4) to develop strategy of seaweed aquaculture development in the island.

For the purpose of the analysis, this study employed both primary data from field observation and secondary data from relevant institutions. Land suitability was analyzed based on the environmental factors of the planted areas of Pari Islands (Pari Island, Burung Island, Kongsi Island, and Tikus Island) with biophysical parameter of sea-water standard quality. Three analysis and measures are utilized within this study, such as: Principal Component Analysis to analyzing the effects of socio-economic factors of the farmers to the seaweed development; Bio-economic model to analyzing efficiency of the seaweed culture; and SWOT Analysis for developing a seaweed culture strategy.

This research shows that Pari Island and Burung Island are highly suitable for seaweed culture, Kongsi Island, and Tikus Island are suitable for seaweed culture development. What needed for such a development are redefining the spatial allocation of marine culture locations redefining the clusters and configuration of seaweed cultural location, increasing the quality of farmers in managing the seaweed aquaculture, empowering local institutions of seaweed culture, and increasing access of farmers to the capital. This consideration will allow such seaweed culture to reach maximum profit by harvesting at the day of the 63 th of the planting time.
ABSTRAK

BESWENI. Kajian Ekologi Ekonomi Pengembangan Budidaya Rumput Laut di Kepulauan Seribu (Studi Kasus di P.Pari). Dibimbing oleh DIETRIECH G. BENGEN dan AKHMAD FAUZI.

Penelitian ini bertujuan untuk: (1) menganalisis kesesuaian lahan budidaya rumput laut di P.Pari. (2) menganalisis karakteristik sosial ekonomi budaya masyarakat pembudidaya rumput laut dan keterkaitannya dengan biofisik lahan budidaya rumput laut di P.Pari. (3) menganalisis secara bioekonomi untuk mendapatkan efisiensi ekonomi budidaya rumput laut. (4) menganalisis strategi untuk pengembangan budidaya rumput laut di P.Pari Kepulauan Seribu.

Hasil penelitian ini memperlihatkan bahwa di goba P. Pari, P.Burung, termasuk kelas sangat sesuai dan di goba P. Kongsri dan P. Tikus termasuk kelas sesuai untuk pengembangan budidaya rumput laut. Strategi yang dibutuhkan untuk pengembangan adalah penataan alokasi lokasi budidaya laut, penataan lokasi budidaya rumput laut, peningkatan kualitas sumberdaya manusia, peningkatan dan pemberdayaan kelembagaan usaha rumput laut dan peningkatan sumber modal untuk usaha rumput laut. Secara bioekonomi maka keuntungan maksimum dari usaha budidaya rumput laut diperoleh pada masa pemeliharaan 63 hari.
SURAT PERNYATAAN

Dengan ini saya menyatakan bahwa tesis yang berjudul:

KAJIAN EKOLOGI EKONOMI PENGEMBANGAN BUDIDAYA RUMPUT LAUT DI KEPULAUAN SERIBU (STUDI KASUS DI GUGUSAN P.PARI)

adalah hasil karya sendiri dan belum pernah dipublikasikan. Semua sumber data dan informasi yang digunakan telah dinyatakan secara jelas dan dapat diperiksa kebenarannya.

Bogor, 28 Oktober

Besweni
KAJIAN EKOLOGI EKONOMI PENGEMBANGAN
BUDIDAYA RUMPUT LAUT DI KEPULAUAN SERIBU
(STUDI KASUS DI GUGUSAN P.PARI)

Oleh
BESWENI

Tesis
Sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program
Studi Pengelolaan Sumberdaya Pesisir dan Lautan

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
2002
Judul Tesis : Kajian Ekologi Ekonomi Pengembangan Budidaya Rumput Laut di Kepulauan Seribu (Studi Kasus di Gugusan P.Pari)
Nama : Beswendi
NRP : 997771
Program Studi : Pengelolaan Sumberdaya Pesisir dan Lautan

Menyetujui :

1. Komisi Pembimbing

 signatures

Dr. Ir. Dietriech G. Bengen, DEA
Ketua

 Dr. Ir. Akhmad Fauzi, M.Sc
Anggota

Mengetahui,

2. Ketua Program Studi

Pengelolaan Sumberdaya Pesisir Dan Lautan

 signature

Prof. Dr. Ir. Rokhmin Dahuri, MS.

3. Direktur Program Pascasarjana

 signature

Prof. Dr. H. Syafrida Manuwoto, MSc.

Tanggal Lulus : 28 Oktober 2002
RIWAYAT HIDUP

PRAKATA

Melalui tesis ini penulis mengucapkan terima kasih kepada:

1. Bapak Dr. Ir. Dietriech G.Bengen, DEA, sebagai ketua komisi pembimbing; Dr. Ir. Akhmad Fauzi, MSc, sebagai anggota, yang telah membimbing penulis dalam penyelesaian tesis ini,
2. Bapak Ir. Drs. H.Moch.Rahardjo, MMA, sebagai Kepala Dinas Peternakan, Perikanan dan Kelautan Propinsi DKI Jakarta, yang telah memotivasi penulis sampai penyelesaian tesis ini,
3. Bapak Azhari, pembudidaya rumput laut di P.Pari, yang telah banyak membantu penulis dalam pengumpulan data
4. Teman-teman kelompok A da B SPL- angkatan genap, yang satu-persatu tidak dapat penulis sebutkan, yang selalu kompak dan seperjuangan
5. Teman-teman Sub Dinas Pembinaan masyarakat peternakan, perikanan dan kelautan yang telah membantu penulis dalam penyusunan tesis ini,
6. Keluarga besar Program Pascasarjana Sumberdaya Pesisir dan Lautan, yang telah membantu penulis dalam penyelesaian studi ini,
7. Kepada ibuku tersayang Kamsinah, yang sangat membantu moril dan materil dengan mendoakan, mendorong penulis sampai selesainya tesis ini;
8. Kepada suamiku tercinta Erlan Jaelani yang penuh kasih sayang, dalam mendorong penulis selama pendidikan pada Program Pascasarjana SPL sampai selesainya tesis ini
9. Terakhir, ucapan kasih sayang, anakku tercinta Erbi Setiawan dan Ditta Fadhilla Rahmawati, yang selalu mendoakan penulis selama pendidikan Pascasarjana SPL- IPB sampai penyelesaian tesis ini

Pada kesempatan ini penulis berharap semoga tesis ini dapat bermanfaat bagi para pembaca dan yang membutuhkan.

Bogor, 28 Oktober 2002

Penulis
<table>
<thead>
<tr>
<th>DAFTAR ISI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>vii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>ix</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>x</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Perumusan Masalah</td>
<td>4</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>5</td>
</tr>
<tr>
<td>Manfaat Penelitian</td>
<td>6</td>
</tr>
<tr>
<td>Kerangka Pendekatan Penelitian</td>
<td>6</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td>8</td>
</tr>
<tr>
<td>Biologi Rumput Laut</td>
<td>8</td>
</tr>
<tr>
<td>Budidaya Rumput Laut</td>
<td>9</td>
</tr>
<tr>
<td>Lokasi Biologi, Fisika dan Kimia</td>
<td>9</td>
</tr>
<tr>
<td>Penyediaan Bibit</td>
<td>12</td>
</tr>
<tr>
<td>Metode Budidaya</td>
<td>12</td>
</tr>
<tr>
<td>Usaha Budidaya Rumput Laut</td>
<td>13</td>
</tr>
<tr>
<td>METODOLOGI PENELITIAN</td>
<td>15</td>
</tr>
<tr>
<td>Lokasi dan Waktu</td>
<td>15</td>
</tr>
<tr>
<td>Jenis, Sumber dan Metode Pengumpulan Data</td>
<td>15</td>
</tr>
<tr>
<td>Metode Pengambilan Sampel</td>
<td>16</td>
</tr>
<tr>
<td>Analisis Data</td>
<td>17</td>
</tr>
<tr>
<td>Analisis Kesesuaian</td>
<td>17</td>
</tr>
<tr>
<td>Analisis Karakteristik Lingkungan Sosial Ekonomi</td>
<td>20</td>
</tr>
<tr>
<td>Analisis Bioekonomi Budidaya Rumput Laut</td>
<td>22</td>
</tr>
<tr>
<td>Analisis Strategi Pengembangan Budidaya Rumput Laut</td>
<td>24</td>
</tr>
<tr>
<td>KEADAAN UMUM DAERAH PENELITIAN</td>
<td>28</td>
</tr>
<tr>
<td>Lingkungan Fisik</td>
<td>28</td>
</tr>
<tr>
<td>Letak Geografis dan Luas Wilayah</td>
<td>28</td>
</tr>
<tr>
<td>Iklim dan Cuaca</td>
<td>29</td>
</tr>
<tr>
<td>Keragaman Hayati</td>
<td>31</td>
</tr>
</tbody>
</table>
Keragaan Sosial Ekonomi Budaya ... 32
 Kependudukan .. 32
 Pendidikan .. 35
 Mata Pencaharian ... 35
 Potensi Budidaya Rumput Laut di Kepulauan Seribu 36
 Metode Budidaya .. 37
 Pemasaran Rumput Laut ... 37
 Pendapatan .. 38
 Kelembagaan .. 38

HASIL DAN PEMBAHASAN .. 41
 Kesesuaian Lahan Budidaya Rumput Laut 41
 Karakteristik Sosial Ekonomi dan Budaya 47
 Bioekonomi Budidaya Rumput Laut .. 55
 Arahana Strategi Pengembangan Budaya Rumput Laut 59

KESIMPILAN DAN SARAN .. 64
 Kesimpulan .. 64
 Saran .. 65

DAFTAR PUSTAKA .. 66

LAMPIRAN .. 68
<table>
<thead>
<tr>
<th>No.</th>
<th>Gambar/Keterangan</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diagram Kerangka Pemikiran Penelitian</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Diagram Analisis SWOT</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Diagram Matrik SWOT</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Saluran Pemasaran Rumput Laut</td>
<td>38</td>
</tr>
<tr>
<td>5</td>
<td>Korelasi variabel pada sumbu utama pertama (F1) dengan ke-dua (F2)</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Distribusi individu pada sumbu utama pertama (F1) dan ke-dua (F2)</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>Korelasi variabel pada sumbu utama ke-dua (F2) dengan ke-tiga (F3)</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>Distribusi individu pada sumbu utama ke-dua (F2) dan ke-tiga (F3)</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>Korelasi variabel pada sumbu utama pertama (F1) dengan ke-tiga (F3)</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>Distribusi individu pada sumbu utama pertama (F1) dan ketiga (F3)</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>Hubungan waktu dengan berat/biomass</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Hubungan waktu dengan laju pertumbuhan harian</td>
<td>57</td>
</tr>
<tr>
<td>No.</td>
<td>Daftar Tabel</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Matrik kesesuaian lahan budidaya rumput laut di goba Gugusan P.Pari</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>Matrik analisis karateristik sosial ekonomi dan budaya pembudidaya</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Gugusan P.Pari dan Luasnya</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Struktur penduduk di Kepulauan seribu berdasarkan jenis kelamin</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Struktur penduduk Kepulauan seribu berdasarkan umur</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Tingkat pendidikan kelurahan P.Pari</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>Mata pencaharian penduduk Kepulauan Seribu</td>
<td>36</td>
</tr>
<tr>
<td>8</td>
<td>Jumlah pembudidaya, produksi rumput laut tahun 1997-1999</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>Hasil Pengukuran parametr biofisik budidaya rumput laut Gugusan P.Pari</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Hasil analisis kesesuaian lahan budidaya rumput laut di gugusan P.Pari</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Perbandingan kualitas perairan di goba P.Pari tahun 1997 dan 2002</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>Kelas variabel sosial ekonomi masyarakat pembudidaya rumput laut</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Laju pertumbuhan budidaya rumput laut Eucheuma cottonii</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>Kandungan keranginan dan kadar air rumput laut Eucheuma</td>
<td>58</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>No.</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peta Kepulauan Seribu</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>Peta lokasi penelitian (Gugusan P. Pari Kep. Seribu)</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>Analisis skoring biofisik budidaya rumput laut di gugusan P. Pari</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Rekapitulasi hasil kuesioner responden pembudidaya rumput laut di gugusan P. Pari</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Nilai akar ciri dan vektor ciri analisis karakteristik sosial ekonomi dan budaya masyarakat pembudidaya rumput laut di gugusan P. Pari</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>Korelasi antara variabel dan sumbu utama</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>Koordinat individu pada sumbu utama dan nilai cosinusnya</td>
<td>78</td>
</tr>
<tr>
<td>8</td>
<td>Analisa usaha budidaya rumput laut di gugusan P. Pari</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>Nilai skoring faktor internal budidaya rumput laut di gugusan P. Pari</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>Nilai skoring faktor eksternal budidaya rumput laut di gugusan P. Pari</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>Persyaratan tumbuh budidaya rumput laut</td>
<td>84</td>
</tr>
<tr>
<td>12</td>
<td>Peta kesesuaian lahan budidaya rumput laut di goba gugusan P. Pari</td>
<td>85</td>
</tr>
</tbody>
</table>

Kep. Seribu
PENDAHULUAN

Latar Belakang

Produksi perikanan Indonesia saat ini sebagian besar masih didominasi dari perikanan tangkap. Dengan semakin meningkatnya kegiatan penangkapan akan menimbulkan tangkap lebih dan penurunan kondisi lingkungan sehingga dikhawatirkan sumberdaya perikanan di alam akan semakin menurun.

Rumput laut jenis algae merah (*Rhodophyta*) merupakan kelompok algae yang jenis-jenisnya memiliki berbagai bentuk dan variasi warna. Namun sebagai indikatorya adalah bahwa algae merah akan mengalami perubahan warna dari warna
aslinya menjadi ungu apabila terkena panas sinar matahari secara langsung. Dari kelompok algae merah inilah dewasa ini di Indonesia yang lebih banyak dimanfaatkan baik dalam negeri maupun untuk diekspor yang salah satu jenisnya adalah *Eucheuma*.

Peningkatan permintaan pasar rumput laut penghasil karaginan ini memicu perkembangan budidayanya di Indonesia terutama di Bali dengan mendatangkan bibit unggul *Eucheuma spinosum* dan *Eucheuma cottoni* dari Tambahang-Filipina sebagai negara yang pertama kali mengekspor jenis rumput laut ini. Dari Bali inilah bibit *Eucheuma* tersebut dikembangkan ke daerah-daerah lain termasuk Kepulauan Seribu.

Di propinsi DKI Jakarta pengembangan budidaya rumput laut dilakukan di Kepulauan Seribu yang terdapat pada 4 (empat) kelurahan dari 6 (enam) kelurahan yang ada yaitu kelurahan P.Panggang, P.Tidung, P.Pari dan P.Kelapa. Dari aspek teknis, usaha budidaya rumput laut sangat mudah dilakukan, waktu pemeliharaan yang relatif singkat, dan bibit yang digunakan berasal dari lokasi sendiri. Sedangkan dari aspek ekonomi, usaha ini menguntungkan karena biaya pemeliharaan murah, harga jual yang cukup tinggi, serta pangsa pasar yang luas baik dalam negeri maupun luar negeri (ekspor). Sedangkan dari sisi sosial, ekonomi dan budaya masyarakat Kepulauan Seribu, budidaya rumput laut merupakan salah satu mata pencaharian utama keluarga.

Oleh karena itu untuk mengantisipasi penurunan lebih jauh, perlu dikaji kembali aspek ekologi dari budidaya rumput laut ini. Aspek ekologi ini sangat penting dalam pengembangan budidaya karena berkaitan dengan pemilihan lokasi
budidaya rumput laut itu sendiri yang merupakan salah satu faktor penting dalam menentukan keberhasilannya.

Dipilihnya Kepulauan Seribu sebagai lokasi penelitian adalah karena berdasarkan UU No.34 tahun 1999 Kepulauan Seribu meningkat statusnya dari Kecamatan menjadi Kabupaten Administrasi, dengan demikian pengelolaan Kepulauan Seribu untuk meningkatkan kesejahteraan masyarakatnya termasuk perikanan lebih pula, sehingga rumput laut sebagai komoditas lokal perlu dikembangkan. Kemudian P.Pari dipilih sebagai lokasi studi kasus karena secara historis di P.Parilah yang pertama kali dikembangkan budidaya tentang rumput laut *Eucheuma* dimaksud, dan 87,81 % (281 KK) dari penduduknya (320 KK) sebagai pembudidaya rumput laut dengan metode tali apung (tali rawe).

Perumusan Masalah

Seperti yang telah disampaikan bahwa budidaya rumput laut jenis *Eucheuma cottonii* yang dibudidayakan di Kepulauan Seribu secara teknis, ekonomis dan sosial budaya masyarakat mempunyai potensi untuk dikembangkan.

Untuk dapat mengoptimalkan pemanfaatan sumberdaya laut, kegiatan budidaya rumput laut yang dikembangkan harus didasarkan pada elemen-elemen yang mendukungnya. Elemen tersebut antara lain ekologi, sosial budaya ekonomi masyarakat. Intervensi dari elemen-elemen tersebut jika dikelola secara optimal diharapkan dapat meningkatkan pendapatan masyarakat lokal khususnya petani pembudidaya rumput laut di Kepulauan Seribu.
Hal ini sangat penting mengingat aktivitas perikanan di Kepulauan Seribu tidak hanya budidaya rumput laut tetapi ada yang lain seperti budidaya ikan laut dan penangkapan ikan yang juga merupakan mata pencaharian utama masyarakat Kepulauan Seribu.

Berdasarkan hal-hal tersebut diatas diperoleh rumusan permasalahan sebagai berikut:

a. Apakah budidaya rumput laut yang dilakukan di gugusan P.Pari Kepulauan Seribu masih sesuai secara ekologi dalam hal ini biofisik?

b. Apakah ada keterkaitan antara lingkungan ekologi dengan lingkungan sosial ekonomi budaya masyarakat pembudidaya rumput laut?

c. Kapan secara bioekonomi budidaya rumput laut mendapat keuntungan secara maksimum?

d. Strategi apa yang perlu diarahkan dalam pengembangan budidaya rumput laut di gugusan P.Pari Kepulauan Seribu?

Tujuan Penelitian

Berdasarkan perumusan diatas, maka penelitian ini bertujuan sebagai berikut :

a. Menganalisis kesesuaian lahan budidaya rumput lahan di gugusan P.Pari Kepulauan Seribu,

b. Menganalisis karakteristik sosial ekonomi budaya masyarakat pembudidaya rumput laut dan keterkaitannya dengan biofisik budidaya rumput laut.

c. Menganalisis secara bioekonomi untuk mendapatkan efisiensi ekonomi budidaya rumput laut.
d. Menganalisis arah strategi yang perlu dalam pengembangan budidaya rumput laut di gugusan P.Pari Kepulauan Seribu.

Manfaat Penelitian

Hasil dari penelitian ini diharapkan akan memberikan manfaat kepada petani pembudidaya rumput laut, pengusaha, kreditur/Bank dan pengambil kebijaksanaan dalam pengembangan budidaya rumput laut di Kepulauan Seribu pada umumnya dan gugusan P.Pari khususnya.

Kerangka Pendekatan Penelitian

Pemilihan lokasi yang sesuai merupakan salah satu aspek ekologi dalam budidaya dengan kriteria yang dibutuhkan. Begitu juga untuk budidaya rumput laut pemilihan lokasi merupakan hal yang penting karena sulitnya membuat perlakuan tertentu terhadap kondisi ekologi perairan laut yang selalu dinamis. Hal ini disebabkan karena pertumbuhan rumput laut sangat dipengaruhi oleh kondisi perairan tersebut yaitu faktor biofisik tempat rumput laut dibudidayakan.

Berdasarkan latar belakang, perumusan masalah maka agar potensi rumput laut ini dapat dikembangkan dalam rangka peningkatan kesejahteraan masyarakat Kepulauan Seribu, maka perlu dikaji kembali aspek ekologisnya dengan analisis kesesuaian lahan dan efisiensi ekonomi serta kebijakannya untuk pengembangan usaha budidaya rumput laut di Kepulauan Seribu. Secara diagramatik kerangka pemikiran penelitian ini dapat dilihat pada gambar 1.
Gambar 1. Diagram Kerangka Pemikiran Penelitian.
TINJAUAN PUSTAKA

Biologi Rumput laut

Menurut Soegiarto A, 1978, bahwa secara taksonomi rumput laut *Eucheuma*
dapat diklasifikasikan sebagai berikut:

Kelas : Rhodophyceae
Ordo : Gigartinales
Famili : Solieriacae
Genus : *Eucheuma*

Spesies: *Eucheuma spinosum*

Eucheuma cottonii

Ciri-ciri *Eucheuma* adalah thallus dan cabang-cabangnya berbentuk silinder atau
pipih. Percabangannya tidak teratur dan kasar karena ditumbuh oleh nodulla atau
spine untuk melindungi gametan.

Lebih lanjut dijelaskan bahwa jenis rumput laut yang dibudidayakan di
Kepulauan Seribu adalah jenis *Eucheuma cottonii* atau *Kappaphycus alvarezii*
dengan ciri khusus duri-duri pada thallus runcing memanjang dan agak jarang-jarang.
Rumput laut jenis *Eucheuma cottonii* dapat dimanfaatkan sebagai karaginan yang
berperan sebagai pengatur keseimbangan, dan pengemulsian (Ismail *et al*, 1999), dan
lebih lanjut menyebutkan bahan karaginan digunakan pada industri instan, makanan,
farmasi dan kosmetik.
Budidaya Rumput Laut

Lokasi Biologi, Fisika dan Kimia

Keberhasilan budidaya rumput laut dengan pemilihan lokasi sangat tepat dan merupakan salah satu faktor penting. Gambaran tentang biofisik air laut yang diperlukan untuk usaha budidaya rumput laut penting diketahui agar tidak timbul masalah yang dapat menghambat usaha itu sendiri dan mempengaruhi mutu hasil yang dikehendaki.

Lokasi dan lahan budidaya *Eucheuma* sangat ditentukan oleh kondisi ekologis yang meliputi parameter lingkungan fisika, kimia dan biologi (Sulistijo, 1996).

a. Lingkungan Fisika

- Untuk menghindari kerusakan fisik sarana budidaya maupun rumput laut dari pengaruh angin dan gelombang yang besar, maka diperlukan lokasi yang terlindung dari hempasan ombak sehingga diperairan teluk atau terbuka tetapi terlindung oleh karang penghalang atau pulau didepannya baik untuk budidaya rumput laut.

- Dasar perairan yang paling baik untuk pertumbuhan *Eucheuma* adalah yang stabil terdiri dari potongan karang mati bercampur dengan karang pasir. Hal ini dapat diindikasikan adanya sea grass yang merupakan petunjuk adanya gerakan air yang baik. Dasar perairan yang berpasir dan sedikit lumpur dapat dikatakan baik juga terutama untuk penanaman dengan sistim rakit bambu atau tali rawai.
• Kedalaman air yang baik bagi pertumbuhan rumput laut adalah 30 – 60 cm pada surut terendah. Hal ini untuk menghindari rumput laut mengalami kekeringan karena terkena sinar matahari secara langsung pada waktu surut terendah dan memperoleh pencahayaan sinar matahari yang cukup pada waktu air pasang. Tetapi pada kedalaman 0-30 cm dan 60-200 cm masih cukup baik. Sistem penanaman lepas dasar dapat dilakukan pada perairan dengan kedalaman 0-60 cm, sistem rakit bambu pada kedalaman 30-200 cm dan sistem tali rawai pada kedalaman sekitar 200 cm.

• Kenaikan temperatur yang tinggi akan mengakibatkan thallus rumput laut menjadi pucat kekuning-kuningan yang menjadikan tidak sehat. Oleh karena itu suhu yang baik untuk budidaya rumput laut adalah 27 – 30 C.

• Tingkat kecerahan yang tinggi diperlukan dalam budidaya rumput laut. Hal ini dimaksudkan agar cahaya penetrasi matahari dapat masuk ke dalam air. Intensitas sinar yang diterima secara sempurna oleh thallus merupakan faktor utama dalam proses fotosintesis. Kondisi air yang jernih dengan tingkat transparansi sekitar 1,5 meter cukup baik bagi pertumbuhan rumput laut.

• Kesuburan dari rumput laut sangat ditentukan oleh gerakan air yang berombak maupun berarus. Gerakan air diperlukan untuk pengangkut yang paling baik zat makanan yang diperlukan untuk pertumbuhan rumput laut. Disamping itu gerakan air yang cukup juga dapat untuk menghindari terkumpulnya kotoran pada thallus. Adanya arus dapat mengatasi kenaikan temperatur air laut yang
tajam. Kecepatan arus yang dianggap cukup untuk budidaya rumput laut sekitar 20 – 40 cm/detik.

b. Kondisi Lingkungan Kimia

- Rumput laut tumbuh pada salinitas yang tinggi. Penurunan salinitas akibat air tawar yang masuk akan menyebabkan pertumbuhan rumput laut menjadi tidak normal. Oleh karena itu budidaya rumput laut sebaiknya jauh dari mulut muara sungai. Salinitas yang dianjurkan untuk budidaya rumput laut adalah 28 – 34 per mil dengan nilai optimum 32 per mil.

- Keasaman yang baik sekitar pH 6 – 9, tetapi yang optimum adalah antara 7,5 – 8,0.

- Untuk kegiatan budidaya diperlukan kisaran kandungan nitrat 1,0 – 3,0 ppm dan untuk fosfat berkisar antara 0,021 – 0,10 ppm dapat dikatakan perairan tersebut mempunyai tingkat kesuburan yang baik dan dapat digunakan untuk kegiatan budidaya laut.

c. Kondisi Lingkungan Biologi

Sebaiknya untuk perairan budidaya Eucheuma dipilih perairan yang secara alami ditumbuhki oleh komunitas dari berbagai makro algae seperti ulva, Caulerpa, Padina, Hypnea dan lain-lain, dimana hal ini merupakan salah satu indikator bahwa perairan tersebut cocok untuk budidaya Eucheuma. Kemudian sebaiknya bebas dari hewan air lainnya yang bersifat herbivora terutama ikan baronang/lingkis (Sigarus spp, penyu laut (Chelonia midos) dan bulu babi yang dapat memakan tanaman budidaya.
Penyediaan Bibit

Lokasi yang mempunyai stok alami rumput laut merupakan petunjuk bahwa lokasi tersebut cocok untuk budidaya rumput laut, tetapi sebaliknya apabila tidak terdapat bibit alami belum tentu lokasi tersebut tidak cocok untuk budidaya (Ditjen Perikanan, 1997).

Metode Budidaya

- Metode Lepas Dasar (*off bottom method*)

 Penanaman *Eucheuma sp* dengan cara metode lepas dasar biasanya untuk perairan yang mempunyai dasar karang berpasir tidak berlumpur dan arus yang cukup baik
sehingga mudah untuk menancapkan patok/pancang. Kedalaman air sekitar 30-50 cm pada waktu surut terendah Metode ini ditinjau dari segi biaya lebih murah dibandingkan metode lainnya dan kualitas rumput laut yang dihasilkan relatif baik tetapi pertumbuhan tanaman lebih kecil.

- Metode Rakit Apung

Dasar perairan terdiri dari karang dan pergerakan air didominasi oleh ombak serta kedalaman perairan lebih dari 5 meter. Metode ini menggunakan sebuah rakt apung dengan ukuran 2,5 x 5 meter. Antara satu rakt dengan rakt yang lain dapat digandeng dan agar rakt tidak hanyut terbawa arus maka dapat dipergunakan tali plastik sebagai penahan antar rakt dan menggunakan jangkar didasar perairan.

Menurut Afriyanto, 1993 bahwa Eucheuma yang dipelihara dengan metode apung tingkat pertumbuhan hariannya sebesar 2-3 %. Sedangkan menurut penelitian IPB ,2001 bahwa Eucheuma yang ditanam setiap 30 kg menjadi 3-10 kali lipat setelah dipelihara selama 50 -60 hari di Kepulauan Seribu.

Usaha Budidaya Rumput Laut.

Setiap langkah untuk pengambilan keputusan dalam investasi diperlukan suatu persiapan dengan perhitungan untuk memperoleh keberhasilan dari usaha tersebut (Kadariah, et al, 1978)

Pada penelitian ini, analisis finansial yang akan dilakukan adalah efisiensi ekonomi pengelolaan sumberdaya rumput laut dengan melihat hubungan waktu dengan berat biomas maksimum terjadi, dimana saat itu pula keuntungan maksimum juga diperoleh.
Untuk budidaya rumput laut, menurut Sulistijo, et al, 1980, bahwa laju pertumbuhan budidaya rumput laut diukur dengan mengamati pertumbuhan berat biomasnya yang dapat dihitung dengan rumus:

\[W_n = W_0 \times (1 + G)^n \]

Dimana \(W_n \) = Berat biomas hari ke \(n \)

\(W_0 \) = Berat biomas permulaan

\(G \) = Laju pertumbuhan harian (%)

\(n \) = Umur (dalam hari)

sehingga \(G = \frac{n \times W_n}{W_0} - 1 \)

\[G = \left(\frac{W_n}{W_0} - 1\right)^{1/n} \]

Untuk melihat laju pertumbuhan maksimum dari budidaya rumput laut tersebut diperoleh dari turunan pertama dari fungsi laju pertumbuhan terhadap \(n \).

Menurut Wade, 1985 bahwa pada saat laju pertumbuhan maksimum terjadi maka pada saat itu pula berat/biomas maksimum diperoleh sehingga secara ekonomi keuntungan maksimum juga didapat, seperti rumus dibawah ini yaitu:

\[\pi = P_n \times W_n - C \]

dimana;

\(\pi \) = fungsi keuntungan

\(P_n \) = Harga pada periode \(n \)

\(W_n \) = Berat biomas pada periode \(n \)

\(C \) = Biaya pemeliharaan selama periode \(n \)
METODOLOGI PENELITIAN

Lokasi dan Waktu

Jenis, Sumber dan Metode Pengumpulan Data

Jenis data yang digunakan untuk penelitian ini terdiri dari 2 (dua) jenis yaitu data primer dan sekunder. Data primer diperoleh melalui observasi dan wawancara yang dilakukan dengan lisan dan tulisan terhadap masyarakat pembudidaya rumput laut dan para pakar yang pernah melakukan penelitian dilokasi penelitian.

Untuk data sekunder diperoleh melalui penelusuran diberbagai instansi terkait antara lain: Dinas Peternakan, Perikanan dan Kelautan Propinsi DKI Jakarta, Bapeda Propinsi DKI Jakarta, Kantor Kecamatan Kepulauan Seribu Selatan dan Utara, Kantor Bupati Kabupaten Administrasi Kepulauan Seribu, Lembaga Oseanologi-LIPI.

Metode pengumpulan data yang digunakan dalam penelitian ini adalah metode survei. Menurut Singarimbun dan Effendi, 1985 metode survei adalah metode penelitian yang menggali data dan informasi yang diperlukan dari sample satu populasi dengan menggunakan kuesioner sebagai alat pengumpulan data yang pokok.
Data yang dikumpulkan selama kegiatan penelitian meliputi:

- Data biofisik yang berkaitan dengan budidaya rumput laut yaitu; parameter fisika (arus, suhu, kecerahan, keterlindungan, kedalaman, substrat), parameter kimia (pH, oksigen terlarut, salinitas, posphat, nitrat), parameter biologi (komunitas makro algae, bewan herbivora), dan parameter lingkungan (pencemaran).

- Data tentang kondisi sosial ekonomi budaya masyarakat pembudidaya rumput laut di P.Pari yaitu; umur, jumlah anggota keluarga, pendidikan, pendapatan, lama tinggal, etnis, pengeluaran dan pengalaman.

- Data tentang faktor produksi berikut biaya yang digunakan untuk budidaya rumput laut selama pemeliharaan serta produksi dan harga jual rumput laut tersebut.

- Data pendukung serta data keadaan umum lokasi penelitian.

Metode Pengambilan Sampel

Metode pengambilan sample yang digunakan adalah contoh acak sederhana (simple random sampling) yang berarti setiap unsur dapat terpilih dengan peluang yang sama, dengan peluang terambilnya semua unsur dalam contoh yang sama.

Responden yang dijadikan contoh adalah pembudidaya rumput laut di goba gugusan P.Pari yang semuanya bertempat tinggal di P. Pari.

Adapun jumlah contoh dapat dirumuskan sebagai berikut:

\[
N = \frac{N}{1 + N e^2}
\]
Dimana n: jumlah contoh
N: total populasi
e: sampling error (10%)

Analisis Data

Analisis Kesesuaian

Pemilihan lokasi yang tepat untuk budidaya rumput laut merupakan hal yang penting karena sulitnya membuat perlakuan tertentu terhadap kondisi ekologi perairan laut yang selalu dinamis, sehingga pertumbuhan rumput laut itu sangat ditentukan oleh kondisi ekologi dimana budidaya dilakukan. Penentuan kesesuaian suatu lokasi budidaya merupakan salah satu kondisi ekologi yang akan dilakukan dengan cara melihat keadaan biofisik lokasi budidaya rumput laut dengan cara membandingkan hasilnya dengan baku mutu atau syarat tumpuh rumput laut dalam hal ini jenis *Eucheuma* yang dibudidayakan di goba gugusan P.Pari Kepulauan Seribu. Adapun tahapan analisisnya adalah sebagai berikut:

- Setelah diperoleh data biofisik yang diperlukan untuk budidaya rumput laut dimaksud kemudian dibandingkan dengan baku mutu/persyaratan tumbuh dari rumput laut jenis *Eucheuma*.
- Selanjutnya dibuatkan matrik kesesuaian (tabel 1) dengan memberikan bobot pada setiap parameter dari 0,1 sampai dengan 0,9 sehingga jumlah total bobot adalah 1. Pembobotan didasarkan pada dominannya pengaruh parameter tersebut terhadap pertumbuhan rumput laut. Kemudian selain bobot setiap parameter ditentukan rating sebagai dengan nilai 1-3 dimana 1 adalah rating sangat sesuai, 2
adalah rating sesuai dan 3 adalah tidak sesuai. Hasil perkalian bobot dengan rating akan menghasilkan total skor dengan nilai 1-3. Adapun kriteria parameter yang digunakan dalam penyusunan matrik kesesuaian dapat dilihat acuannya sebagai berikut:

a. Arus, yang optimal adalah 20-40 cm/detik
b. Kecerahan, 1-4 meter
c. Keterlindungan, terlindung dari hempasan ombak
d. Suhu, suhu perairan sekitar 30°C
e. PH air yang diinginkan adalah 6,5-8,5
f. DO yang tidak kurang dari 4 mg/liter
g. Salinitas alami dimana tidak langsung berhubungan dengan air tawar (30 %o)
h. Nitrat yang merupakan salah satu zat hara yang terkandung diperairan 1,0 – 3,0 mg/liter
i. Phosphat yang juga diperlukan kisaran kandungannya 0,021 – 0,1 mg/liter
j. Kemudian secara biologi ditumbuh oleh ulva, Caulerpa, Padina, Hypnea sebagai indikator dan bebas dari hewan herbivora (Ikan Beronang, Penyu laut dan Bulu babi).
k. Pencemaran, yang pada penelitian ini hanya melihat secara fisik (ada atau tidak ada sampah atau limbah rumah tangga).
Tabel 1. Matrik kesesuaian lahan budidaya rumput laut di goba gugusan P.Pari Kepulauan Seribu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Tidak Sesuai</th>
<th>Sesuai</th>
<th>Sangat Sesuai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arus</td>
<td>m/detik</td>
<td><10 dan >40</td>
<td>10-20</td>
<td>20-40</td>
</tr>
<tr>
<td>Kecerahan</td>
<td>meter</td>
<td><1</td>
<td>1-5</td>
<td>>5</td>
</tr>
<tr>
<td>Keterlindungan</td>
<td></td>
<td>tdk terlindung</td>
<td>agak terlindung</td>
<td></td>
</tr>
<tr>
<td>Suhu</td>
<td>ºC</td>
<td><24 dan >30</td>
<td>24-27</td>
<td>27-30</td>
</tr>
<tr>
<td>Kedalaman</td>
<td>meter</td>
<td><0,3</td>
<td>0,3-0,6</td>
<td>>0,6</td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td><6,8</td>
<td>6,8-7,5</td>
<td>7,6-8,5</td>
</tr>
<tr>
<td>DO</td>
<td>mg/l</td>
<td><1</td>
<td>1-4</td>
<td>>4</td>
</tr>
<tr>
<td>Salinitas</td>
<td>%</td>
<td><28</td>
<td>28-29</td>
<td>30-32</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/l</td>
<td><0,002</td>
<td>0,002-1,00</td>
<td>1-3</td>
</tr>
<tr>
<td>Phosphat</td>
<td>mg/l</td>
<td><0,001</td>
<td>0,001-0,021</td>
<td>0,021-0,1</td>
</tr>
<tr>
<td>Algae</td>
<td></td>
<td>sedikit</td>
<td>sedang</td>
<td>banyak</td>
</tr>
<tr>
<td>Substrat</td>
<td></td>
<td>lumpur</td>
<td>lumpur berpasir</td>
<td>pasir</td>
</tr>
<tr>
<td>Pencemaran</td>
<td>tinggi</td>
<td></td>
<td>sedang</td>
<td>tidak ada</td>
</tr>
</tbody>
</table>

- Berdasarkan total skor tersebut di atas, maka diperoleh kelas kesesuaian yaitu:

 Sangat sesuai
 (S1) : 2,34 – 3,0

 Sesuai
 (S2) : 1,67 – 2,33

 Tidak sesuai
 (S3) : 1,0 – 1,66

Adapun arti dari kelas kesesuaian tersebut adalah:

Kelas S1 : Sangat sesuai (highly suitable)

Daerah ini tidak mempunyai pembatas (penghambat) yang serius untuk menentukan perlakuan yang diberikan atau hanya mempunyai penghambat (pembatas) yang tidak berarti atau berpengaruh secara nyata terhadap penggunaannya dan tidak akan menaikan masukan/tingkatan perlakuan yang diberikan.
Kelas S2 : Sesuai (Suitable)

Daerah ini mempunyai pembatas (penghambat) yang agak serius untuk suatu penggunaan tertentu lestari. Pembatas tersebut akan mengurangi produktivitas lahan dan keuntungan yang diperoleh serta meningkatkan masukan (input) untuk mengusahakan lahan tersebut.

Kelas S3 : Tidak Sesuai (Not Suitable)

Daerah ini mempunyai pembatas (penghambat) dengan tingkat sangat berat akan tetapi masih memungkinkan diatasi/diperbaiki, artinya masih dapat ditingkatkan menjadi jika dilakukan perbaikan dengan tingkat teknologi yang lebih tinggi atau dapat dilakukan dengan perlakuan tambahan dengan biaya rasional.

Kemudian hasil analisis kesesuaian dipetakan pada lokasi budidaya rumput laut yang dimanfaatkan sekarang.

Analisis Karateristik Sosial Ekonomi Budaya

Analisis statistik multivariabel yang didasarkan pada analisis komponen utama (Principle Component Analysis, PCA) digunakan untuk melihat pengaruh dari faktor-faktor sosial masyarakat yaitu umur, pendidikan, jumlah anggota keluarga, pendapatan, lama tinggal, etnis, pengalaman dan pengeluaran masyarakat pembudidaya rumput laut.

Menurut Bengen, 2000 tujuan utama penggunaan analisis komponen utama adalah sebagai berikut:
• Mengekstraksi informasi esensial yang terdapat dalam suatu tabel/matrik data yang besar.

• Menghasilkan suatu representasi grafik yang memudahkan interpretasi.

• Mempelajari suatu tabel/matrik data dari sudut pandang kemiripan antara individu atau hubungan antar variabel.

Adapun tahapan dalam analisis dimaksud yang akan digunakan adalah sebagai berikut:

• Membangun matrik data yang terdiri dari baris dan kolom, dimana stasion pengamatan sebagai individu atau baris dan variabel kualitas lingkungan sebagai kolom,

• Menormalisasi data hasil pengukuran dilapangan dengan cara pemusatan dan pereduksian,

• Menggunakan indek sintetik untuk membuat matrik korelasi hubungan antara dua parameter

• Menggunakan pengukuran jarak Euclidean yaitu jumlah kuadrat perbedaan antara individu untuk variabel yang berkorespondensi atau berhubungan.

Pada prinsipnya analisis komponen utama menggunakan jarak Euclidean (jumlah kuadrat perbedaan antara individu/baris dan variabel/kolom yang berkoresponden dengan rumus seperti berikut:

\[D^2(i,i') = \sum_{j=i}^{k} (x_{ij} - x_{i'})^2 \]

Dimana
\[i = \text{karakter i baris} \]
\[j = \text{karaker j kolom} \]
Semakin jarak Euclidean antar faktor-faktor variabel semakin mirip
karateristiknya, demikian juga sebaliknya. Berdasarkan hasil dari analisis komponen
utama ini maka diketahui ada tidaknya perbedaan atau kemiripan karateristik sosial
ekonomi budaya masyarakat dilokasi penelitian. Pengolahan data analisis ini
menggunakan program komputer STAT-ITCF dengan matrik sebagai berikut:

Tabel 2. Matrik analisis karateristik sosial ekonomi dan budaya
pembudidaya rumput laut

<table>
<thead>
<tr>
<th>No</th>
<th>Observasi</th>
<th>Variabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Observasi 1</td>
<td>X1</td>
</tr>
<tr>
<td>2</td>
<td>Observasi 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Observasi 3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Observasi n</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- x1 = umur
- x2 = pendapatan
- x3 = tingkat pendidikan
- x4 = lama tinggal
- x5 = jumlah anggota keluarga
- x6 = etnis
- x7 = pengalaman
- x8 = pengeluaran

Setelah mengetahui variabel di atas yang mengkarakteristikkan setiap
kelompok, selanjutnya dilakukan analisis keterkaitan antara lingkungan biofisik
dengan lingkungan sosial ekonomi dan budaya berdasarkan variabel tersebut di atas.
Analisis ditujukan untuk melihat apakah ada hubungan atau pengaruh variabel sosial,
ekonomi dan budaya pembudidaya rumput laut dengan kesesuaian lahan.

Analisis Bioekonomi Budidaya Rumput Laut

Analisis bioekonomi merupakan salah satu analisis secara ekonomi yang
berdasarkan pada sifat biologi dari komoditi yang dianalisis. Analisis yang akan
digunakan adalah analisis finansial efisiensi ekonomi dengan model bioekonomi.

Pada model ini yang akan dianalisis adalah:

a. Berat biomas maksimum

Berat biomas maksimum diperoleh pada saat laju pertumbuhan maksimum yaitu pada turunan pertama dari fungsi laju pertumbuhan tersebut terhadap \(n \) (umur) dimana sama dengan nol, secara sistematik adalah:

\[
G = \sqrt[n]{\frac{W_n}{W_0} - 1} \\
G = \left(\frac{W_n}{W_0} - 1\right)^{1/n}
\]

Dimana \(G \) = laju pertumbuhan harian (%)

\(W_n \) = berat biomas pada waktu \(n \)

\(W_0 \) = berat biomas pada waktu awal

\(n \) = waktu

Maka \(\frac{dG}{dn} = \frac{1}{n} \left(\frac{W_n}{W_0} - 1\right)^{1/n-1} = 0 \)

b. Keuntungan

Setelah diperoleh waktu \(n \) berat/biomas maksimum maka pada saat itu pula terjadi keuntungan maksimum dengan rumus:

\[
G^n = \frac{W_n}{W_0} - 1 \\
W_n = W_0 (G^n - 1)
\]

Sehingga keuntungan maksimum = \(Pn \ (W_0 \ (G^n - 1)) - C \)

\(\pi = Pn \cdot W_n - C \) (Wade, 1985)
Dimana; \(n \) = Fungsi keuntungan

\(P_n \) = Fungsi harga pada periode \(n \)

\(W_n \) = Fungsi berat biomas pada periode \(n \)

\(C \) = Fungsi biaya pemeliharaan pada \(n \)

Analisis Strategi Pengembangan Budidaya Rumput Laut

Berdasarkan hasil analisis kesesuaian, karakteristik sosial ekonomi dan budaya masyarakat dan analisis bioekonomi usaha budidaya rumput laut maka untuk strategi pengembangannya digunakan analisis SWOT.

Analisis SWOT merupakan salah satu cara atau strategi untuk mengarahkan pada pemberian keputusan berdasarkan faktor-faktor pendukung dan situasi organisasi serta pertimbangan lainnya sehingga diperoleh suatu kerangka kerja yang logis yang dapat digambarkan dengan matrik. Menurut Rangkuti, 2001 bahwa analisis SWOT membandingkan antara faktor-faktor internal berupa kekuatan dan kelemahan, faktor-faktor eksternal berupa peluang dan ancaman seperti diagram dibawah ini:
Gambar 2. Diagram Analisis SWOT.

Lebih lanjut dinyatakan untuk menggambarkan secara jelas bagaimana peluang dan ancaman eksternal yang dihadapi dapat disesuaikan dengan kekuatan dan kelemahan yang dimilikinya seperti dibawah ini:

<table>
<thead>
<tr>
<th>EFAS</th>
<th>IFAS</th>
<th>STRENGTHS (S)</th>
<th>WEAKNESSES (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPPORTUNITIES (O)</td>
<td>Tentukan 5-10 faktor peluang eksternal</td>
<td>STRATEGI SO</td>
<td>STRATEGI WO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciptakan strategi yang menggunakan kekuatan untuk memanfaatkan peluang</td>
<td>Ciptakan strategi yang meminimalkan kelemahan untuk memanfaatkan peluang</td>
</tr>
<tr>
<td>THREATS (T)</td>
<td>Tentukan 5-10 faktor ancaman eksternal</td>
<td>STRATEGI ST</td>
<td>STRATEGI WT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciptakan strategi yang menggunakan kekuatan untuk mengatasi ancaman</td>
<td>Ciptakan strategi yang meminimalkan kelemahan dan menghindari ancaman</td>
</tr>
</tbody>
</table>

Gambar 3. Diagram Matrik SWOT.
i. Strategi SO : yaitu memanfaatkan seluruh kekuatan untuk merebut dan memanfaatkan peluang sebesar-besarnya

ii. Strategi ST : yaitu menggunakan kekuatan yang dimiliki untuk mengatasi ancaman

iii. Strategi WO : yaitu pemanfaatan peluang yang ada dengan cara meminimalkan kelemahan yang ada

i. Strategi WT : Strategi ini didasarkan pada kegiatan yang bersifat defensif dan berusaha meminimalkan kelemahan yang ada serta menghindari ancaman.

Dari matrik tersebut di atas diharapkan dapat diambil suatu keputusan untuk arahan strategi pengembangan budidaya rumput laut di Kepulauan Seribu.

Adapun langkah-langkah yang dilakukan dalam analisis SWOT adalah sebagai berikut:

- Identifikasi kekuatan/kelemahan dan Peluang/ancaman
- Analisis SWOT

Pada analisis ini dilakukan pemberian bobot terhadap setiap faktor internal dan eksternal dari 0,1 – 0,9 dengan jumlah total bobot masing-masing faktor adalah 1. Kemudian setiap unsur pada masing-masing faktor (internal dan eksternal) diberikan rating atau nilai yang berkisar dari 1 hingga 3 untuk setiap unsur pada faktor internal dan eksternal.
Pemberian bobot dan rating berdasarkan tingkat kepentingan dan kondisi lokasi penelitian. Hasil inilah yang akan menentukan strategi yang digunakan untuk pengambilan keputusan pengembangan budidaya rumput laut.
KEADAAN UMUM DAERAH PENELITIAN

Lingkungan Fisik

Letak Geografis dan Luas Wilayah

Lokasi penelitian dilakukan di Kabupaten Administrasi Kepulauan Seribu yang secara geografis mempunyai batas-batas sebagai berikut:

\[
106^\circ 20'00'' \text{ BT} \quad \text{s.d.} \quad 106^\circ 57'00'' \text{ BT}
\]

\[
dan \quad 5^\circ 10'00'' \text{ LS} \quad \text{s.d.} \quad 5^\circ 57'00'' \text{ LU}
\]

yang terbentang mulai dari kawasan Teluk Jakarta sampai P.Sabira (lampiran 2).

Tabel 3. Gugusan P.Pari dan luasnya

<table>
<thead>
<tr>
<th>No</th>
<th>Nama Pulau</th>
<th>Luas (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P.Karang Kudus</td>
<td>0,76</td>
</tr>
<tr>
<td>2</td>
<td>P.Biawak</td>
<td>0,24</td>
</tr>
<tr>
<td>3</td>
<td>P.Tengah</td>
<td>2,00</td>
</tr>
<tr>
<td>4</td>
<td>P.Kongsi</td>
<td>1,63</td>
</tr>
<tr>
<td>5</td>
<td>P.Burung</td>
<td>41,32</td>
</tr>
<tr>
<td>6</td>
<td>P. Tiku</td>
<td>3,26</td>
</tr>
<tr>
<td>7</td>
<td>P.Lancang Besar</td>
<td>1,20</td>
</tr>
<tr>
<td>8</td>
<td>P.Lancang Kecil</td>
<td>15,13</td>
</tr>
<tr>
<td>9</td>
<td>P.Bokor</td>
<td>11,03</td>
</tr>
<tr>
<td>10</td>
<td>P.Pari</td>
<td>18,00</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>94,57</td>
</tr>
</tbody>
</table>

Sumber: Rencana Tata Ruang Wilayah Kabupaten Administrasi Kepulauan Seribu, ITB, 2000.

Iklim dan Cuaca

Keadaan angin di gususan P.Pari hampir sama dengan keadaan angin di Kepulauan Seribu yang sangat dipengaruhi oleh angin monsoon yang secara garis besar dapat dibagi menjadi angin musim barat (Desember-Maret) dan angin musim timur (Juni-September). Sedangkan musim pancaroba terjadi antara bulan April-Mei dan Oktober-November.

Kecepatan angin pada musim barat bervariasi antara 7-20 knot per jam yang umumnya bertiup dari Barat Daya sampai Barat laut. Angin kencang dengan
kecepatan 20 knot per jam biasanya terjadi antara bulan Desember-Februari. Pada musim timur kecepatan angin berkisar antara 7-15 knot per jam yang bertiup dari arah Timur Laut sampai Tenggara.

Musim hujan biasanya terjadi antara bulan November-April dengan hari hujan antara 10-20 hari per bulan. Curah hujan terbesar terjadi pada bulan Januari dan total curah hujan tahunan sekitar 1700 mm.

Musim kemarau berlangsung antara bulan Mei-Oktober. Namun dalam musim kemarau kadang-kadang juga terdapat hujan dengan jumlah hari hujan antara 4-10 hari per bulan. Curah hujan terkecil terjadi pada bulan Agustus.

Suhu udara rata-rata antara 26-28,5° dengan suhu udara maksimum tahunan 29,5 – 32,9°C dan minimum 23,0 – 23,8°C.

Kelembaban nisbi berkisar antara 75-99%, tekanan udara rata-rata 1009,0-1011,0 mb. Pasang surut permukaan air laut di Kepulauan seribu bersifat harian tunggal. Level air tertinggi 0,6 m di atas duduk tengah dan terendah 0,5 m di bawah duduk tengah.

Kecepatan maksimum arus permukaan pada musim barat 0,5 m per detik menuju ke timur sampai tenggara begitu juga pada musim timur. Gelombang laut pada musim barat mempunyai ketinggian antara 0,5 – 1,75 m dan pada musim timur 0,5 – 1,0 m.

Suhu air permukaan pada musim barat berkisar antara 28 - 30°C dan pada musim timur antara 28,5 -31,0°C. Sedangkan salinitas permukaan berkisar antara 30-34 per mil, baik pada musim barat maupun musim timur. Kedalaman perairan di
Kepulauan Seribu bervariasi dari 25 – 46 meter sedangkan kondisi pasang surut dikategorikan sebagian harian tunggal dengan kedudukan air tertinggi dan terendah.

Arus yang terjadi di perairan Laut Jawa terutama dipengaruhi oleh angin dan pasang-surut. Oleh karena arus di laut jawa adalah dominan maka semakin jauh dari Laut Jawa arus semakin melemah termasuk Kepulauan Seribu. Pola arus yang terjadi pada musim barat adalah bergerak kearah timur begitu juga sebaliknya pada musim timur arus bergerak ke arah barat.

Keragaman Hayati

Pada umumnya Kepulauan Seribu dikelilingi oleh terumbu karang jenis tepian (fringing reef) dengan kedalaman 0,5 – 5 m yang merupakan salah satu ekosistem perairan laut yang penting terutama berfungsi sebagai habitat berbagai jenis biota laut.

Jenis karang yang dapat ditemukan di sini termasuk ke dalam jenis karang keras (hard coral) seperti karang batu (massive coral), karang meja (table coral), karang kipas (gorgonian), karang daun (leaf coral), karang jamur (mushroom coral) dan jenis karang lunak (soft coral). Dari berbagai penelitian ditemukan bahwa dikawasan ini terdapat sekitar 267 jenis karang bercabang.

Jenis ikan hias yang ditemui di Kepulauan Seribu sebanyak 113 jenis yang diantaranya adalah termasuk ke dalam famili Chaetodontidae, Diodontidae dan Pomacanthidae. Oleh karena itu menurut penelitian tersebut bahwa keragaman jenis terumbu karang dan ikan hias di kawasan ini merupakan salah satu tertinggi di Asia Tenggara.
Jenis ikan konsumsi yang banyak ditemui adalah ikan kerapu, napoleon, kakap, baronang, ekor kuning, tenggiri dan tongkol. Jenis Echinodermata yang banyak ditemukan diantaranya adalah bintang laut, teripang dan bulu babi yang juga merupakan indikator pengrusakan terumbu karang.

Jenis crustacea yang banyak dikonsumsi antara lain kepiting, rajungan dan udang karang (*spiny lobster*). Moluska yang dijumpai di Kepulauan Seribu terdiri dari jenis-jenis Gastropoda sebanyak 295 jenis dan Pelecypoda sebanyak 97 jenis termasuk yang dilindungi diantaranya kimia raksasa dan kimia sisik.

Ketadaha hayati perairan meliputi sebaran Khlorofil-a, Fitoplankton dan Zooplankton. Kandungan klorofil-a secara umum berkisar antara 0,5 hingga 4,0 mg/m3. Kandungan klorofil-a permukaan umumnya lebih besar dari perairan dasar. Kelimpahan zooplankton secara umum berkisar 86-17.970 individu/liter yang didominasi oleh divisi Crustacea yaitu stadia Nauplius (IPB, 1997).

Keragaaan Sosial Ekonomi Budaya

Kependudukan

Perbandingan antara laki-laki dengan perempuan pada penduduk Kelurahan P.Pari adalah 935 jiwa dan 937 jiwa dengan sex rasio 99,79, dan untuk lebih rinci

<table>
<thead>
<tr>
<th>Kelurahan</th>
<th>Laki-laki</th>
<th>Perempuan</th>
<th>Jumlah</th>
<th>KK</th>
<th>Luas (Ha)</th>
<th>Sex Rasio</th>
<th>Kepada datan (jiwa/ Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kel.P.Panggang</td>
<td>2,144</td>
<td>2,046</td>
<td>4,190</td>
<td>1,182</td>
<td>62,10</td>
<td>104,79</td>
<td>67,47</td>
</tr>
<tr>
<td>Kel.P.Tidung</td>
<td>1,903</td>
<td>1,950</td>
<td>3,853</td>
<td>971</td>
<td>10,90</td>
<td>97,59</td>
<td>353,49</td>
</tr>
<tr>
<td>Kel.P.Kelapa</td>
<td>2,499</td>
<td>2,366</td>
<td>4,865</td>
<td>1,419</td>
<td>258,47</td>
<td>105,62</td>
<td>18,82</td>
</tr>
<tr>
<td>Kel.Untung Jawa</td>
<td>806</td>
<td>768</td>
<td>1,574</td>
<td>377</td>
<td>102,85</td>
<td>104,95</td>
<td>15,30</td>
</tr>
<tr>
<td>Kel.P.Harapan</td>
<td>955</td>
<td>918</td>
<td>1,873</td>
<td>477</td>
<td>244,72</td>
<td>104,03</td>
<td>7,65</td>
</tr>
<tr>
<td>Kel.P.Pari</td>
<td>935</td>
<td>937</td>
<td>1,872</td>
<td>484</td>
<td>94,57</td>
<td>99,79</td>
<td>19,79</td>
</tr>
<tr>
<td>Jumlah</td>
<td>9,242</td>
<td>8,985</td>
<td>18,227</td>
<td>4,910</td>
<td>773,61</td>
<td>1,03</td>
<td>23,56</td>
</tr>
</tbody>
</table>

Kemudian penduduk Kepulauan Seribu berdasarkan umur dapat juga dilihat pada tabel 5.

Tabel 5. Struktur penduduk Kepulauan seribu berdasarkan umur.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>1059</td>
<td>597</td>
<td>1032</td>
<td>241</td>
<td>2929</td>
<td>16,28</td>
</tr>
<tr>
<td>6 - 15</td>
<td>980</td>
<td>1417</td>
<td>1314</td>
<td>341</td>
<td>4052</td>
<td>22,52</td>
</tr>
<tr>
<td>16-25</td>
<td>819</td>
<td>1096</td>
<td>1236</td>
<td>309</td>
<td>3460</td>
<td>19,23</td>
</tr>
<tr>
<td>26-35</td>
<td>501</td>
<td>795</td>
<td>1082</td>
<td>253</td>
<td>2631</td>
<td>14,62</td>
</tr>
<tr>
<td>36-45</td>
<td>401</td>
<td>612</td>
<td>708</td>
<td>169</td>
<td>1890</td>
<td>10,50</td>
</tr>
<tr>
<td>46-55</td>
<td>233</td>
<td>447</td>
<td>581</td>
<td>120</td>
<td>1381</td>
<td>7,68</td>
</tr>
<tr>
<td>56-65</td>
<td>135</td>
<td>298</td>
<td>437</td>
<td>89</td>
<td>959</td>
<td>5,33</td>
</tr>
<tr>
<td>> 66</td>
<td>31</td>
<td>306</td>
<td>305</td>
<td>47</td>
<td>689</td>
<td>3,82</td>
</tr>
<tr>
<td>Jumlah</td>
<td>4.159</td>
<td>5.568</td>
<td>6.695</td>
<td>1.569</td>
<td>17991</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Dari tabel 5 di atas terlihat bahwa jumlah penduduk pada kelompok umur 6-15 adalah paling banyak yang kemudian diikuti oleh kelompok umur 16-25 yang berarti jumlah penduduk Kepulauan Seribu banyak terdapat pada kelompok umur produktif.
Pendidikan

Tingkat pendidikan penduduk Kelurahan P. Pari dapat dilihat pada tabel dibawah ini.

Tabel 6. Tingkat pendidikan penduduk Kelurahan P. Pari

<table>
<thead>
<tr>
<th>No.</th>
<th>Pendidikan</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tidak tamat SD</td>
<td>30,35</td>
</tr>
<tr>
<td>2.</td>
<td>Tamat SD</td>
<td>37,79</td>
</tr>
<tr>
<td>3.</td>
<td>Tamat SLTP</td>
<td>8,13</td>
</tr>
<tr>
<td>4.</td>
<td>Tamat SLTA</td>
<td>5,98</td>
</tr>
<tr>
<td>5.</td>
<td>Tamat Akademik</td>
<td>1,45</td>
</tr>
<tr>
<td>6.</td>
<td>Anak-anak (< 5 th)</td>
<td>16,28</td>
</tr>
</tbody>
</table>

Mata Pencaharian

Mata pencaharian yang ada di Kelurahan P. Tidung (termasuk P.Pari) meliputi bidang pertanian/perikanan, industri, bangunan, perdagangan, transportasi dan komunikasi, pemerintahan, jasa dan lainnya, dapat dilihat pada tabel dibawah ini.
Tabel 7. Mata pencaharian penduduk Kepulauan Seribu.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelayan</td>
<td>1,733</td>
<td>1,100</td>
<td>1,750</td>
<td>250</td>
<td>163</td>
<td>71,64</td>
</tr>
<tr>
<td>TNI/Polri</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>20</td>
<td>0,3</td>
</tr>
<tr>
<td>Karyawan/Buruh</td>
<td>18</td>
<td>83</td>
<td>250</td>
<td>16</td>
<td>367</td>
<td>5,44</td>
</tr>
<tr>
<td>Perdagangan</td>
<td>47</td>
<td>58</td>
<td>315</td>
<td>12</td>
<td>432</td>
<td>6,4</td>
</tr>
<tr>
<td>Wiraswasta</td>
<td>22</td>
<td>37</td>
<td>104</td>
<td>-</td>
<td>163</td>
<td>2,42</td>
</tr>
<tr>
<td>PNS</td>
<td>195</td>
<td>144</td>
<td>75</td>
<td>55</td>
<td>469</td>
<td>6,95</td>
</tr>
<tr>
<td>Jasa lainnya</td>
<td>58</td>
<td>76</td>
<td>383</td>
<td>25</td>
<td>462</td>
<td>6,85</td>
</tr>
</tbody>
</table>

Sumber: Pengelolaan Laut Lestari, ITB, 2001

Potensi Budidaya Rumput Laut di Kepulauan Seribu

Adapun jumlah pembudidaya rumput laut dan produksinya di Kepulauan Seribu:

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah pembudidaya rumput laut (jiwa)</th>
<th>Produksi (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>164</td>
<td>642</td>
</tr>
<tr>
<td>1998</td>
<td>876</td>
<td>3,432</td>
</tr>
</tbody>
</table>

Keterangan: ---- sangat menurun

Metode Budidaya

Metode budidaya rumput laut yang digunakan adalah longline (tali rawe) dengan biaya lebih murah dan merupakan modifikasi dari metode rakit apung. Metode ini meliputi komponen tali utama, tali ris, tali pengikat rumput laut, pelampung besar, pelampung kecil (botol aqua) dan tali jangkar untuk menahan sistem pada posisi yang tetap.

Bibit berasal dari hasil panen sendiri yang berumur ± 45 hari dengan berat 100 gr per rumpun. Setiap unit mengandung 100 – 500 tali dimana 1 tali pada umumnya terdiri dari 50 rumpun dengan jarak tanam 20-30 cm.

Pemasaran Rumput Laut

Rumput laut yang dihasilkan oleh para petani umumnya dalam bentuk kering asin dan tawar yang siap dipasarkan. Selain itu juga dalam bentuk basah dan diolah sendiri oleh istri-istri nelayan seperti dodol rumput laut. Adapun saluran pemasaran rumput laut terlihat pada gambar di bawah ini:
Pendapatan

Pendapatan pembudidaya rumput laut sampai dengan tahun 1999 meningkat, dan kemudian tahun 2000 menurun seiring dengan penurunan produksi.

Kelembagaan

Kelembagaan yang terlibat dalam usaha budidaya rumput laut di Kepulauan Seribu:

1. Departemen Kelautan dan Perikanan

Secara tidak langsung Departemen Kelautan dan Perikanan terlibat dalam usaha budidaya rumput laut di Kepulauan Seribu yaitu dalam bentuk memberikan arahan kebijakan mengenai teknis produksi, pengolahan dan pemasarannya melalui unit terkait antara lain Balai Budidaya Laut Lampung, Balai Bimbingan Pengajian Mutu Hasil Perikanan.
2. Lembaga Oseanologi Nasional

 Kelembagaan ini sangat terkait dalam hal penelitian tentang teknologi baik
 budidaya, pengolahan dan pemasaran.

3. Dinas Peternakan, Perikanan dan Kelautan Propinsi DKI Jakarta

 Dinas ini merupakan salah satu kelembagaan yang secara langsung melakukan
 pembinaan terhadap masyarakat Kepulauan Seribu termasuk usaha budidaya
 rumput laut.

4. Perguruan Tinggi

 Perguruan tinggi yang sering terlibat dalam usaha budidaya rumput laut adalah
 IPB dalam bentuk praktek lapang bagi mahasiswaanya serta kerjasama penelitian
 oleh Lembaga Penelitian IPB serta Fakultas Perikanan dan Ilmu Kelautan serta
 Pusat Kajian Sumberdaya Pesisir dan Lautan (PKSPL).

5. Lembaga Perbankan

 Lembaga perbankan terlibat pada penyediaan modal kerja antara lain Bank
 Pembangunan DKI Jakarta dan BRI.

6. Koperasi Perikanan

 Koperasi Mina Jaya dan Koperasi Mina merupakan koperasi Kepulauan Seribu
 yang terlibat dalam pemasaran produksi rumput laut.

7. Himpunan Nelayan Seluruh Indonesia (HNSI)

 HNSI adalah organisasi profesi yang menghimpun nelayan maupun petani rumput
 laut yang terlibat dalam membantu penyaluran bantuan sarana dan prasarana serta
 pemasaran rumput laut.

8. Kelompok Tani Rumput Laut
Kelompok tani merupakan wadah pembudidaya rumput laut dalam usaha budidaya rumput laut.

9. Pengumpul, investor dan eksportir

Pengumpul, investor dan eksportir terlibat dalam membantu permodalan dan pemasaran hasil produksi rumput laut di Kepulauan Seribu.
HASIL DAN PEMBAHASAN

Kesesuaian Lahan Budidaya Rumput Laut

Analisis kesesuaian didasarkan pada ekologi perairan dengan parameter biofisik (berpedoman pada Surat Keputusan Menteri Kependudukan dan Lingkungan Hidup Kep-02/MenKLH/I/1988 tanggal 19 Januari 1988 tentang baku mutu air laut untuk budidaya perikanan dipertajam dari hasil penelitian Sulistijo tahun 1996 tentang perkembangan budidaya rumput laut di Indonesia) yang bertujuan untuk melihat pada lokasi budidaya rumput laut dimaksud apakah termasuk kelas sangat sesuai (S1), sesuai (S2), atau tidak sesuai (S3).

Adapun hasil penelitian pengukuran parameter biofisik di lokasi penelitian dapat dilihat pada tabel 9.
Tabel 9. Hasil pengukuran parameter fisika, kimia, biologi dan lingkungan di Lokasi budidaya rumput laut gugusan P.Pari

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Lokasi</th>
<th>Baku Mutu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fisika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Arus</td>
<td>cm/detik</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>b. Kecerahan</td>
<td>meter</td>
<td>11,5</td>
<td>10,5</td>
</tr>
<tr>
<td>c. Keterlindungan</td>
<td>Tld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Suhu</td>
<td>°C</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>e. Kedalaman</td>
<td>meter</td>
<td>3-7</td>
<td>3-7</td>
</tr>
<tr>
<td>f. Substrat</td>
<td></td>
<td>pasir sedikit berlumpur</td>
<td>pasir sedikit berlumpur</td>
</tr>
<tr>
<td>Kimia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. pH</td>
<td></td>
<td>8</td>
<td>8,01</td>
</tr>
<tr>
<td>b. DO</td>
<td>mg/l</td>
<td>7,4</td>
<td>7,5</td>
</tr>
<tr>
<td>c. Salinitas</td>
<td>%</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>d. Nitrat</td>
<td>mg/l</td>
<td>0,003</td>
<td>0,003</td>
</tr>
<tr>
<td>e. Phosphat</td>
<td>mg/l</td>
<td>0,006</td>
<td><0,001</td>
</tr>
<tr>
<td>Biologi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Komunitas makro algae</td>
<td>Banyak</td>
<td>banyak</td>
<td>banyak</td>
</tr>
<tr>
<td>b. Hewan Herbivora</td>
<td></td>
<td>sedang</td>
<td>sedang</td>
</tr>
<tr>
<td>Lingkungan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Pencemaran</td>
<td></td>
<td>sedang</td>
<td>sedang</td>
</tr>
</tbody>
</table>

Keterangan:

lokasi 1 = di goba P.Pari
lokasi 2 = di goba P.Burung
lokasi 3 = di goba P.Tikus
lokasi 4 = di goba P.Kongsi (termasuk goba P.Tengah)

Tabel 10. Hasil analisis kesesuaian lahan budidaya rumput laut di goba gugusan P.Pari

<table>
<thead>
<tr>
<th>No.</th>
<th>Lokasi</th>
<th>Luas (Ha)</th>
<th>Skor</th>
<th>Klas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Goba P.Pari</td>
<td>7</td>
<td>2,596</td>
<td>Sangat Sesuai</td>
</tr>
<tr>
<td>2.</td>
<td>Goba P.Burung</td>
<td>5</td>
<td>2,596</td>
<td>Sangat Sesuai</td>
</tr>
<tr>
<td>3.</td>
<td>Goba P.Tikus</td>
<td>15</td>
<td>2,196</td>
<td>Sesuai</td>
</tr>
<tr>
<td>4.</td>
<td>Goba P.Kongsi</td>
<td>3</td>
<td>1,766</td>
<td>Sesuai</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kecepatan arus di goba P.Pari dan P.Burung sebesar 10 m/detik merupakan nilai yang masih sesuai dengan baku mutu yang telah ditetapkan sebagai syarat tumbuh budidaya rumput laut (10-20 m/detik) dan yang sangat sesuai adalah 20-40 m/detik, artinya apabila kecepatan arus <10 m/detik dan > dari 40 m/detik adalah tidak layak untuk persyaratan tumbuh dari budidaya rumput laut tersebut. Hal ini ditemukan di goba P.Kongsi dan P. Tikus yaitu < 10 m/detik. Adapun penyebab utama adalah lokasi goba P.Kongsi berada ditengah gugusan yang dikelilingi oleh karang penghalang sehingga arus yang masuk sangat terbatas, begitu juga dengan lokasi goba P.Tikus merupakan terbesar dengan luas sekitar 15 Ha dan semuanya sudah penuh dengan budidaya rumput laut. Arus di goba-goba sebagian besar berasal dari angin dan pasang surut yang ada, oleh karena itu kecepatan arus yang diperoleh kecil dari 20-40 m/detik.
Peranan ombak dan arus sangat diperlukan dalam budidaya rumput laut sebagai pembawa zat hara dan penyebab massa air menjadi homogen. Massa air yang homogen terhindar dari fluktuasi suhu, salinitas, pH dan oksigen terlarut (DO). Peranan lain dari arus adalah menghindarkan akumulasi "silt" dan epifit yang melekat pada thallus yang menghalangi pertumbuhan rumput laut dan menimbulkan pembusukan pada thallus tersebut sehingga dapat menimbulkan penyakit 'ice-ice'.

Suhu perairan di P.Kongsi yang cukup tinggi yaitu sebesar 32°C yang melebihi baku mutu yang ditetapkan (27 - 30°C) sangat mempengaruhi pertumbuhan dan kualitas dari rumput laut. Menurut Sulistijo, 1996 bahwa suhu perairan yang tinggi akan mengakibatkan thallus rumput laut pucat kekuningan-kuningan yang menyebabkan rumput laut tidak sehat dan membusuk dan inilah salah satu yang memicu ditumbuhki oleh bahteri ("ice-ice").

Kecerahan pada lokasi budidaya semuanya > 5 meter yang artinya memenuhi standar baku mutu atau syarat tumbuh rumput laut yang dibudidayakan. Begitu juga untuk keterlindungan dimana semua lokasi budidaya di gugusan P. Pari terdapat di
goba terlindung dari hamparan gelombang dan ombak yang besar. Jika gelombang terlalu besar akan menyebabkan thallusnya juga patah dan membusuk sehingga dapat ditumbuhi bahteri yang dapat menimbulkan penyakit “ice-ice”.

Untuk kedalaman lokasi budidaya 3-7 m sesuai karena untuk budidaya rumput laut metode apung dapat dilakukan pada kedalaman lebih dari 200 cm (2m) surut terendah.

PH dan oksigen terlarut (DO) hampir merata disemua lokasi, hanya di goba P.Kongsi pH yang agak tinggi (8,03) dan DO yang rendah (6,7 mg/l). Hal ini disebabkan karena kecepatan arus di goba P.Kongsi sangat rendah dibandingkan dengan lokasi lainnya sehingga terjadi ketidak rataan parametr dimaksud.

Sedangkan salinitas masih sesuai dan merata karena gugusan P. Pari tidak langsung menerima air tawar dari muara sungai.

Sama juga halnya dengan kandungan nitrat dan phosphat yang merupakan zat baru bagi rumput laut masih dalam kadar yang sesuai untuk pertumbuhan rumput laut

Parameter biologi yaitu makro algae yang terdapat pada lokasi budidaya ditemukan cukup banyak, hal ini merupakan salah satu indikator bahwa lokasi tersebut layak untuk budidaya rumput laut. Ikan herbivora yang juga merupakan parameter biologi khususnya ikan beronang/lingkis ada ditemukan. Ikan-ikan ini sesuai dengan sifatnya dia akan memakan rumput laut akibatnya bekas yang dimakan akan memicu cepat ditumbuhi oleh bahteri dan akan menyebabkan penyakit “ice-ice”.

Parameter lingkungan yaitu pencemaran hanya dilihat secara fisik yaitu adanya sampah dan limbah rumah tangga yang ditemukan pada lokasi. Hal ini merupakan indikator bahwa air sungai yang bermuara di teluk Jakarta sampai ke
lokasi budidaya gugusan P.Pari dan akibat dari semakin meningkatnya pertambahan penduduk di P.Pari.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satuan</th>
<th>Tahun 1997</th>
<th>Tahun 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisika</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Arus</td>
<td>m/detik</td>
<td>10</td>
<td><10</td>
</tr>
<tr>
<td>b. Suhu</td>
<td>%</td>
<td>29</td>
<td>30-32</td>
</tr>
<tr>
<td>Kimia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. pH</td>
<td></td>
<td>7</td>
<td>8-8,03</td>
</tr>
<tr>
<td>b. Salinitas</td>
<td>%</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>c. Nitrat</td>
<td>mg/l</td>
<td>0,003</td>
<td>0,001-0,002</td>
</tr>
<tr>
<td>d. Phosphat</td>
<td>mg/l</td>
<td>0,007</td>
<td>0,001-0,006</td>
</tr>
<tr>
<td>e. Timah hitam (Tb)</td>
<td>mg/l</td>
<td>0,005</td>
<td>0,012-0,027</td>
</tr>
<tr>
<td>Biologi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Komunitas makro algae</td>
<td>banyak</td>
<td>Sedang</td>
<td></td>
</tr>
<tr>
<td>b. chlorophil-a</td>
<td>mg/m³</td>
<td>0,5-4</td>
<td>0,1-0,4</td>
</tr>
<tr>
<td>c. Hewan Herbivora</td>
<td></td>
<td>sedang</td>
<td>Banyak</td>
</tr>
<tr>
<td>Lingkungan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Pencemaran</td>
<td></td>
<td>tidak ada</td>
<td>Ada/tinggi</td>
</tr>
</tbody>
</table>

Karateristik Sosial Ekonomi Budaya

Analisis karateristik sosial,ekonomi dan budaya masyarakat pembudidaya rumput laut P. Pari, P. Burung, P. Tikus dan P. Kongsi didasarkan pada 8 (delapan) variabel yaitu umur (UMR), pendapatan (PDP), tingkat pendidikan (TPDD), lama tinggal (LG), jumlah anggota keluarga (JA), etnis (ETN), pengalaman (PNG) dan pengeluaran (PNL).

Analisis dilakukan dengan analisis komponen utama pada responden (observasi) pembudidaya rumput laut sebanyak 75 orang. Adapun jumlah variabel dan jumlah observasi dapat secara rinci dilihat pada Lampiran 2.

Setiap variabel dikelompokkan menjadi 3 (tiga) kelas kecuali variabel etnis hanya 2 (dua) kelas, secara rinci dapat dilihat pada tabel 12.
<table>
<thead>
<tr>
<th>No.</th>
<th>Variabel</th>
<th>Kelas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Umur (UMR)</td>
<td>Rendah : 23-37 tahun</td>
<td>42,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang : 38-50 tahun</td>
<td>50,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi : 51-62 tahun</td>
<td>6,67</td>
</tr>
<tr>
<td>2.</td>
<td>Pendapatan (PDP)</td>
<td>Rendah : Rp 600.000,- s.d Rp 833.000,-</td>
<td>53,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang : Rp 834.000,- s.d Rp 1.067.000,-</td>
<td>38,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi : Rp 1.068.000,- s.d Rp 1.300.000,-</td>
<td>8,00</td>
</tr>
<tr>
<td>3.</td>
<td>Tingkat pendidikan (TPDD)</td>
<td>Rendah, SD</td>
<td>85,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang, SLTP</td>
<td>5,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi, SLTA</td>
<td>9,34</td>
</tr>
<tr>
<td>4.</td>
<td>Lama Tinggal (LTG)</td>
<td>Rendah, 10-27 tahun</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang, 28-45 tahun</td>
<td>74,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi, 46-63 tahun</td>
<td>9,33</td>
</tr>
<tr>
<td>5.</td>
<td>Jumlah Anggota Keluarga (JA)</td>
<td>Rendah, 1-3 orang</td>
<td>38,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang, 4-6 orang</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi, 7-8 orang</td>
<td>1,33</td>
</tr>
<tr>
<td>6.</td>
<td>Etnis (ETN)</td>
<td>Pendatang</td>
<td>22,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asli</td>
<td>77,33</td>
</tr>
<tr>
<td>7.</td>
<td>Pengalaman (PNG)</td>
<td>Rendah, 5-8 tahun</td>
<td>26,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang, 9-12 tahun</td>
<td>40,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi, 13-16 tahun</td>
<td>33,33</td>
</tr>
<tr>
<td>8.</td>
<td>Pengeluaran (PNL)</td>
<td>Rendah : Rp 300.000,- s.d Rp 533.000,-</td>
<td>41,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedang : Rp 534.000,- s.d Rp 766.000,-</td>
<td>37,33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tinggi : Rp 767.000,- s.d Rp 1.000.000,-</td>
<td>21,33</td>
</tr>
</tbody>
</table>

Hasil analisis komponen utama memperlihatkan bahwa sebagian besar informasi terpusat pada 3 (tiga) sumbu utama yang memiliki kontribusi total sebesar 61,1 %, dengan ragam masing-masing sumbu sebesar 29,7%, 16,1%, 15,3%.

Variabel pendapatan (PDP), etnis (ETN), pengalaman (PNG), pengeluaran (PNL) memberikan kontribusi sebesar 29,7% pada pembentukan sumbu utama
pertama dengan korelasi antara variabel dan sumbu berturut-turut sebesar 0,6464; 0,6239; 0,7300; 0,7947. Variabel lama tinggal (LTG) memberikan kontribusi sebesar 16,10% pada pembentukan sumbu utama ke-dua dengan korelasi variabel dan sumbu sebesar -0,8706. Variabel umur (UMR) dan tingkat pendidikan (TPDD) memberikan kontribusi sebesar 15,30% pada pembentukan sumbu utama ke-tiga dengan korelasi antara variabel dan sumbu masing-masing sebesar 0,7319 dan -0,6236.

Pada gambar 5 terlihat, bahwa pembudidaya rumput laut di goba P.Pari dan P.Burung yang dikategorikan kelas sangat sesuai, memiliki pendapatan yang lebih tinggi dibandingkan di goba P.Tikus dan P.Kongsi yang dikategorikan kelas sesuai. Hal ini disebabkan karena sebagian besar pembudidaya di lokasi kelas sangat sesuai merupakan etnis asli Kepulauan Seribu yang mempunyai pengalaman yang lebih banyak dari etnis pendatang sehingga memiliki perhatian yang lebih baik tentang kondisi lingkungan perairan budidaya. Individu ini lebih jelas ditampilkan hasil analisisnya pada gambar 6, yaitu individu yang mempunyai pendapatan sedang sampai tinggi (lebih besar dari Rp. 833.000, -), 40%nya terdapat di goba P.Pari (nomor: 08,10,12,14,15,35,40,41,50,52,58,74) dan P.Burung 22,85% (nomor: 20,37,47,44,46,70,72), sedangkan di goba P.Tikus dan P.Kongsi masing-masing sebesar 17,1% (nomor: 02,23,33,34,64,69).
Gambar 5. Korelasi variabel pada sumbu Utama pertama (F₁) dengan ke-dua (F₂)

Gambar 6. Distribusi individu pada sumbu utama pertama (F₁) dan ke-dua (F₂)
Keterangan:
Responden No.01 menutupi responden No.65,69,25
Responden No.03 menutupi responden No.5,73
Responden No.06 menutupi responden No.26,29
Responden No.07 menutupi responden No.30,55
Responden No.11 menutupi responden No.17,19,21
Responden No.12 menutupi responden No.20,50
Responden No.13 menutupi responden No.71
Responden No.16 menutupi responden No.38
Responden No.24 menutupi responden No.47,51,64
Responden No.32 menutupi responden No.49,53,
Responden No.34 menutupi responden No.70,74
Responden No.35 menutupi responden No.40,54
Responden No.59 menutupi responden No.62

Pada gambar 7, lama tinggal pembudidaya rumput laut di gugusan P.Pari yang dikategorikan kelas sangat sesuai (goba P.Pari dan P.Burung), umumnya memiliki lama tinggal yang lebih lama dibandingkan dengan kelompok pembudidaya dilokasi kelas sesuai. Hal ini dapat dijelaskan bahwa mereka yang telah lama tinggal sebagai pembudidaya rumput laut di gugusan P.Pari mempunyai pengalaman yang cukup untuk melakukan aktivitas budidaya rumput laut sehingga perhatian terhadap kesesuaian kondisi lingkungan budidaya lebih baik dibandingkan dengan kelompok lain. Individu ini dapat dijelaskan lebih jauh dari hasil analisis (gambar 8) dimana yang mempunyai pengalaman tinggi (>45 tahun), 83,33%nya terdapat di goba P.Pari (nomor; 08;10;58;59;60), sedangkan 16,6% di goba P.Kongsi (nomor 51).
Gambar 7. Korelasi variabel pada sumbu utama ke-dua (F_2) dan ke-tiga (F_3)

Gambar 8. Distribusi individu pada sumbu utama ke-dua (F_2) dan ke-tiga (F_3)
Keterangan;
Responden No.01 menutupi responden No.25,65,
Responden No.07 menutupi responden No.29,55
Responden No.11 menutupi responden No.17,1968
Responden No.12 menutupi responden No.50
Responden No.14 menutupi responden No.21
Responden No.15 menutupi responden No.73
Responden No.26 menutupi responden No.29
Responden No.34 menutupi responden No.70
Responden No.40 menutupi responden No.54
Responden No.47 menutupi responden No.51
Responden No.49 menutupi responden No.53
Responden No.59 menutupi responden No.62

Pada umumnya pembudidaya rumput laut di gugusan P.Pari memiliki tingkat pendidikan rendah (SD) dengan tingkat umur produktif (23 – 50 tahun), hanya sebagian kecil saja (14,67%) yang memiliki tingkat pendidikan sedang sampai tinggi (SLTP dan SLTA). Pada gambar 9, terlihat bahwa tingkat pendidikan pembudidaya rumput laut tidak berpengaruh terhadap pemilihan kesesuaian lahan, sedangkan umur berpengaruh. Hal ini lebih jelas diperlihatkan pada gambar 10, bahwa individu yang mempunyai tingkat pendidikan SLTP dan SLTA di goba P.Pari hanya 18,18% bahkan di goba P.Burung 0%, sedangkan di lokasi goba P.Kongsi dan P.Tikus 72,72%nya.
Gambar 9. Korelasi variabel pada sumbu utama pertama (F1) dengan ke-tiga (F3)

Gambar 10. Distribusi individu pada sumbu utama pertama (F1) dan ke-tiga (F3)

Keterangan:
Responden No.01 menutupi responden No.25,65,
Responden No.02 menutupi responden No.69
Responden No.07 menutupi responden No.30,55
Responden No.11 menutupi responden No.17,19
Responden No.12 menutupi responden No.50
Responden No.15 menutupi responden No.73
Responden No.26 menutupi responden No.29
Responden No.34 menutupi responden No.70
Responden No.40 menutupi responden No.54
Responden No.47 menutupi responden No.51
Responden No.49 menutupi responden No.53
Responden No.59 menutupi responden No.62

Bioekonomi Usaha Budidaya Rumput Laut

<table>
<thead>
<tr>
<th>Waktu (minggu ke)</th>
<th>Laju pertumbuhan (%)</th>
<th>Berat Biomass (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>9.85</td>
<td>57.906</td>
</tr>
<tr>
<td>2.</td>
<td>9.26</td>
<td>103.652</td>
</tr>
<tr>
<td>3.</td>
<td>9.25</td>
<td>192.290</td>
</tr>
<tr>
<td>4.</td>
<td>8.80</td>
<td>318.220</td>
</tr>
<tr>
<td>5.</td>
<td>8.01</td>
<td>445.000</td>
</tr>
<tr>
<td>6.</td>
<td>7.32</td>
<td>583.050</td>
</tr>
<tr>
<td>7.</td>
<td>6.44</td>
<td>626.990</td>
</tr>
<tr>
<td>8.</td>
<td>5.95</td>
<td>763.440</td>
</tr>
<tr>
<td>9.</td>
<td>5.29</td>
<td>771.000</td>
</tr>
<tr>
<td>10.</td>
<td>4.61</td>
<td>703.469</td>
</tr>
</tbody>
</table>

Sumber: Hasil penelitian Sulistijo, 1994, tentang the harvest quality of *Eucheuma cottonii* culture by floating method in Pari Island North Jakarta.
Penelitian ini dilakukan di goba P. Tikus gugusan P. Pari Kepulauan Seribu dari bulan Agustus sampai dengan Oktober dengan 4 (empat) unit metode rakit apung dengan ukuran 2x2,5 meter per unit dan umur bibit 45 hari. Kondisi ekologi perairan pada saat penelitian Sulistijo ini adalah temperatur 28°C - 30°C, salinitas 31-34, pH 7- 8,5 dan kecerahan 3 – 3,5 meter.

Gambar 11. Hubungan waktu dengan berat/biomas

Gambar 12. Hubungan antara waktu dengan laju pertumbuhan

Dalam pemasaran rumput laut sangat ditentukan oleh kandungan karaginan dan kandungan kadar air yang mempengaruhi kualitasnya. Oleh karena itu pemanenan rumput laut selain berat/biomas juga diperhatikan kandungan karaginan dan kadar air yang ada pada rumput laut tersebut.

Menurut Sulistijo, 1994 bahwa pertumbuhan rumput laut berkorelasi dengan kandungan karaginannya. Pada saat pertumbuhan tinggi, kandungan karaginan menurun. Hal ini disebabkan karena _Eucheuma_ mempunyai 2 fase siklus kehidupan yaitu fase vegetatif dan generatif. Pada fase awal yaitu vegetatif energi
didistribusikan untuk pertumbuhan dan pembentukan karaginan. Kemudian dilanjutkan dengan fase generatif dimana energi untuk pembuatan karaginan direduksi untuk proses generatif sehingga kandungannya menurun sedangkan pertumbuhan tetap berjalan sampai mencapai titik maksimal.

Hasil penelitian Sulistijo dengan analisa laboratorium seperti yang dilihatkan pada tabel 14 bahwa pada waktu pemeliharaan 45 hari kandungan karaginan mencapai maksimum yaitu 52,70 % dan kadar air 24,42 %. Kemudian pada hari ke-60 kandungan karaginan turun mencapai 49,20% dan hari ke dan kadar air 26,95%.

Tabel 14. Kandungan karaginan dan kadar air rumput laut Eucheuma

<table>
<thead>
<tr>
<th>Waktu pemeliharaan (hari)</th>
<th>Kandungan karaginan (%)</th>
<th>Kadar air (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>52,20</td>
<td>20,64</td>
</tr>
<tr>
<td>45</td>
<td>52,70</td>
<td>24,42</td>
</tr>
<tr>
<td>60</td>
<td>49,20</td>
<td>26,95</td>
</tr>
<tr>
<td>75</td>
<td>45,46</td>
<td>31,59</td>
</tr>
</tbody>
</table>

Sumber : Hasil penelitian Sulistijo, 1994, tentang the harvest quality of Eucheuma cottonii culture by floating method in Parang Island North Jakarta.

Menurut Soegiarti, et al, 1978, bahwa standar kualitas Eucheuma untuk dipasarkan dalam negeri dan ekspor untuk kandungan karaginan minimal adalah 25 % dan air 32 %.

Oleh karena itu apabila pemanenan rumput laut dilakukan pada hari ke-63 atau minggu ke-9 adalah saat yang paling baik dimana berat/biomas maksimum tercapai secara bioekonomi keuntungan yang diperoleh juga maksimum serta kandungan karaginan dan kadar air juga memenuhi standar kualitas pemasaran baik dalam negeri maupun luar negeri.
Adapun keuntungan yang diperoleh pada saat minggu ke-9 (hari ke-63) dengan harga jual Rp 3.000,- per kg, berat biomas awal 100 kg dengan laju pertumbuhan harian 5,29 % dan luas lahan 0,3 Ha (200 tali x 15 m) dengan biaya tetap dan biaya variabel untuk adalah Rp 5.287.450,- per panen (secara rinci perhitungan keuntungan dapat dilihat pada lampiran 9). Pemanenan yang dilakukan pada hari ke-63 mempunyai keuntungan jauh lebih besar jika dibandingkan dengan pemanenan hari ke-45 yang dilakukan oleh pembudidaya rumput laut Kepulauan Seribu umumnya yang hanya memperoleh keuntungan sebesar Rp 4.322.160,- per panen (IPB,2001).

Arahan Strategi Pengembangan Budidaya Rumput Laut

Untuk pengembangan usaha budidaya rumput laut di gugusan P. Pari sebagai salah satu produk unggulan pesisir dan kelautan perlu suatu kebijakan dalam rangka pengambilan keputusan untuk pemanfaatan daerah pesisir, pantai dan kelautan.

Oleh karena itu perlu analisis SWOT = Strength, Weakness, Oppurtunity, Threat untuk dapat menjawab hal tersebut di atas. Analisis ini bersifat alternatif yang digunakan untuk mengidentifikasi dengan interaksi unsur-unsur internal (kekuatan dan kelemahan) terhadap unsur-unsur eksternal (peluang dan ancaman). Pada penelitian ini strategi pendekatan di dasarkan dari hasil pembobatan unsur-unsur internal dan eksternal.

Pembobatan unsur-unsur tersebut berasal dari identifikasi yang berdasarkan hasil analisis kesesuaian lahan, karateristik sosial ekonomi budaya masyarakat pembudidaya rumput laut serta analisis bio-ekonomi maka diperoleh faktor kekuatan yaitu potensi biofisik, potensi dan jumlah sumberdaya manusia, bibit dari lokasi sendiri dan sumberdayaalamnya. Sedangkan faktor kelemahan yang diperoleh adalah adanya hama dan penyakit, modal usaha masih rendah dan kemitraan usaha rumput
laut masih rendah. Faktor peluang yang dapat diidentifikasi adalah potensi pasar, kebijakan pemerintah yang mendukung, serta faktor ancaman berupa pencemaran dan pasar global.

Berdasarkan hasil analisis kesesuaian lahan, karateristik sosial ekonomi budaya dan analisis bioekonomi maka telah dilakukan identifikasi faktor internal dan eksternal yang digunakan untuk analisis SWOT maka diperoleh bahwa bobot faktor internal 2,8 (lampiran 7) nilainya lebih besar dari faktor eksternal (2,0) (lampiran 8). Hasil analisis ini berarti bahwa strategi yang dilakukan untuk pengembangan usaha budidaya rumput laut di gugusan P.Pari adalah ST (Strength-threat). Stategi ini maksudnya adalah memanfaatkan kekuatan yang ada untuk menghadapi ancaman.

Dari analisis tersebut di atas diperoleh 5 (lima) arahan strategi pengembangan budidaya rumput laut di gugusan P.Pari Kepulauan Seribu yaitu:

1. Penentuan alokasi lokasi yang dikaitkan dengan kebijakan pemerintah

Arah kebijakan ini merupakan pemanfaatan lokasi budidaya rumput laut sesuai dengan peruntukannya dan kebijakan pemerintah. Hal ini bertujuan agar usaha budidaya rumput laut dalam rangka peningkatan pendapatan masyarakat mengikuti kaedah pembangunan yang berkelanjutan.

Pada Keppres Nomor 23 tahun 1982 tentang budidaya laut diperairan Indonesia pasal 3 disebutkan bahwa Gubemur menetapkan perairan laut yang letaknya di daerah pantai dalam wilayah administratifnya sebagai lokasi melakukan budidaya laut. Untuk menghindari terjadinya pemanfaatan lahan secara tak terkendali perlu mempunyai tata ruang laut kegiatan budidaya laut di Kepulauan Seribu, apalagi untuk Propinsi DKI Jakarta sudah ditindaklanjuti dengan Surat Keputusan Gubemur KDKI Jakarta nomor: 68 tahun 1999 tahun tentang rumput laut merupakan salah satu komoditi unggulan di Propinsi DKI Jakarta. Rumput laut
merupakan salah mata pencaharian utama di Kepulauan Seribu dan didorong oleh SK Gubernur tersebut serta peluang pasar yang besar maka pembudidaya rumput laut semakin mengekspoitasikan lahan untuk usaha budidaya tanpa mengindahkan dampak negatifnya.

Saat ini sulit untuk mengendalikan budidaya rumput laut karena tidak ada larangan untuk membudidayakan pada zona-zona tertentu sehingga konflik sudah mulai bermunculan baik antar pembudidaya itu sendiri maupun dengan stakeholder lainnya antara lain transportasi, pariwisata dan penangkapan.

Faktor peluang yang merupakan unsur eksternal yaitu potensi pasar dan kebijakan pemerintah yang mendukung usaha budidaya rumput laut. Potensi pasar dengan kebijaksanakan pemerintah merupakan 2 (dua) hal yang saling berkaitan. Potensi pasar untuk jenis rumput laut *Eucheuma cottonii* ini lebih banyak diekspor karena kandungan karaginannya sangat diperlukan untuk bahan industri dan kimia lainnya. Selama ini permintaan luar negeri masih belum tercukupi.

Aktivitas dan jumlah industri yang meningkat, jumlah penduduk yang juga selalu meningkat dan masyarakat masih menganggap laut tempat pembuangan sampah maka tidak terelakkan lagi pencemaran akan mengancam perairan Kepulauan Seribu termasuk P.Pari. Berdasarkan pengamatan dilokasi penelitian ditemukan sampah dan limbah organik yang berarti pencemaran sudah sampai ke gugusan P.Pari.

2. Penataan lokasi

Dengan adanya kebijakan pengalokasian lokasi budidaya laut maka penataan lokasi budidaya rumput laut di Kepulauan Seribu umumnya dan di gugusan P.Pari khususnya dapat memudahkan untuk memanfaatkan lokasi/lahan peruntukkan secara optimal. Pemanfaatan lahan secara optimal dapat dikembangkan
berdasarkan daya dukung antara lain biofisik yang telah dianalisis. Berdasarkan analisis biofisik bahwa lahan budidaya rumput laut sekarang ini termasuk kelas sesuai, namun ada salah satu parameter kunci yang tidak layak (sangat kecil) yaitu arus. Arus berfungsi membawa nutrien untuk pertumbuhan rumput laut. Apabila goba-goba penuh dengan budidaya rumput laut maka nutrien yang dibawa oleh arus yang kecil tidak akan merata bahkan ada yang tidak memperolehnya sehingga pertumbuhan rumput laut lambat atau tidak sehat sehingga mudah terserang wabah penyakit yang juga dapat menyebabkan gagal panen. (ice-ice). Oleh karena itu arah kebijakan penataan lokasi budidaya rumput laut sangat penting agar pemanfaatan laut sesuai dengan daya dukungnya.

3. Peningkatan kualitas sumberdaya manusia

Sumberdaya manusia pembudidaya rumput laut di gugusan P. Pari sebagian besar (85,33 %) adalah tamatan SD, artinya kualitas sumberdaya manusia sangat rendah dan tentu mempunyai pola fikir yang masih tradisional. Hal ini dapat dibuktikan bahwa teknologi yang digunakan bersifat turun temurun. Selain itu penanaman rumput laut yang sangat padat dan dilakukan terus menerus tanpa memberikan proses assimilasi terhadap lahan yang digunakan untuk budidaya rumput laut. Peningkatan sumberdaya manusia melalui program penyu luhan melalui pendidikan latihan serta pengembangan wawasan tentang karateristik biofisik perairan yang berpengaruh terhadap teknik budidaya rumput laut.

4. Peningkatan/pemberdayaan kelembagaan

Peningkatan kapasitas kelembagaan budidaya rumput laut sangat diperlukan untuk pengembangan rumput laut di Kepulauan Seribu umumnya. Saat ini rumput laut yang telah dipanen sebagian besar dipasarkan dalam bentuk kering atau basah dan sebagian kecil yang hanya diolah seperti dodol rumput laut yang masih
berskala rumah tangga. Walaupun sudah dilakukan jalinan kemitraan antara kelompok pembudidaya rumput laut dengan investor namun masih belum dimanfaatkan secara optimal, bahkan tidak berjalan sesuai dengan yang diharapkan. Akibatnya pembudidaya rumput laut memasarkan produknya kepada pengumpul yang harganya tergantung pada pengumpul tersebut.

Oleh karena itu pemberdayaan kelompok tani, koperasi perikanan, himpunan nelayan dan investor bahkan hubungan dengan perguruan tinggi dan lembaga penelitian lainnya perlu ditingkatkan.

5. Peningkatan permodalan usaha budidaya rumput laut

Strategi peningkatan sumber permodalan usaha rumput laut diusahakan melalui perbankan dengan bunga yang rendah. Pemerintah telah menyediakan fasilitas kredit khusus untuk usaha perikanan antara lain kredit untuk pemberdayaan ekonomi masyarakat pesisir (PEMP), kredit ketahanan pangan (KKP), kredit untuk golongan masyarakat ekonomi lemah yang disalurkan melalui Bank DKI Jakarta dan kredit perguliran upaya khusus perikanan. Diharapkan dengan yang modal usaha rumput laut akan dapat memenuhi kebutuhan pasar dengan menghasilkan produk yang dapat kompetitif di pasar lokal dan ekspor.
KESIMPULAN DAN SARAN

Kesimpulan

Berdasarkan hasil dan pembahan penelitian yang telah dilakukan di gugusan P. Pari dapat disimpulkan hal-hal sebagai berikut:

3. Analisis sosial ekonomi dan budaya masyarakat pembudidaya rumput laut menunjukkan bahwa adanya hubungan antara karakteristik sosial ekonomi budaya masyarakat pembudidaya rumput laut dengan kesesuaian lahan.

4. Pembudidaya yang berusaha di lokasi sangat sesuai (goba P.Pari dan P.Burung) sebagian besar mempunyai pendapatan yang lebih besar dari yang dilakukan di lahan yang kelas sesuai (goba P.Tikus dan Kongsi).

5. Tingkat pendidikan secara formal tidak mempengaruhi pendapatan usaha budidaya rumput laut akan tetapi selain kesesuaian lahan juga dipengaruhi oleh pengalaman.

6. Pembudidaya rumput laut adalah masyarakat asli Kepulauan Seribu (73,33 %) yang umumnya mempunyai tingkat pendidikan SD (93,33%) yang masih berumur produktif (23-50 tahun).

9. Kebijakan pengembangan budidaya rumput laut di gugusan P. Pari hendaknya didasarkan pada penentuan alokasi lokasi budidaya laut, penataan lokasi budidaya rumput laut, peningkatan kualitas sumberdaya manusia, peningkatan dan pemberdayaan kelembagaan usaha rumput laut dan peningkatan sumber modal untuk usaha rumput laut.

Saran

3. Perlu kajian tentang teknik budidaya rumput laut di luar goba gugusan P.Pari dengan kondisi lingkungan yang terbuka dan bergelombang besar.

4. Perlu dikembangkan program, diantaranya pelatihan tentang penyuluhan karateristik biofisik perairan yang berpengaruh terhadap teknik budidaya rumput laut.
DAFTAR PUSTAKA

LAMPIRAN
Lampiran 2. Peta Lokasi Penelitian (Gugusan P. Pari Kep. Seribu)
Lampiran 3. Hasil Analisis Kesesuaian Biofisik Budidaya Rumput Laut
di gugusan P.Pari

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Bobot</th>
<th>Lokasi I Rating</th>
<th>Skoring</th>
<th>Lokasi II Rating</th>
<th>Skoring</th>
<th>Lokasi III Rating</th>
<th>Skoring</th>
<th>Lokasi IV Rating</th>
<th>Skoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Arus</td>
<td>0,2</td>
<td>2</td>
<td>0,4</td>
<td>2</td>
<td>0,4</td>
<td>1</td>
<td>0,2</td>
<td>1</td>
<td>0,2</td>
</tr>
<tr>
<td>2</td>
<td>Kecerahan</td>
<td>0,05</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td>3</td>
<td>Keterlindungan</td>
<td>0,101</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
</tr>
<tr>
<td>4</td>
<td>Suhu</td>
<td>0,19</td>
<td>3</td>
<td>0,57</td>
<td>3</td>
<td>0,57</td>
<td>3</td>
<td>0,57</td>
<td>1</td>
<td>0,19</td>
</tr>
<tr>
<td>5</td>
<td>Kedalaman</td>
<td>0,101</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
<td>3</td>
<td>0,303</td>
</tr>
<tr>
<td>6</td>
<td>pH</td>
<td>0,018</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
</tr>
<tr>
<td>7</td>
<td>DO</td>
<td>0,018</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
</tr>
<tr>
<td>8</td>
<td>Salinitas</td>
<td>0,018</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
<td>3</td>
<td>0,054</td>
</tr>
<tr>
<td>9</td>
<td>Nitrat</td>
<td>0,018</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
</tr>
<tr>
<td>10</td>
<td>Phosphat</td>
<td>0,018</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
</tr>
<tr>
<td>11</td>
<td>Makro Algae</td>
<td>0,05</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
</tr>
<tr>
<td>12</td>
<td>Substrat</td>
<td>0,018</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
<td>2</td>
<td>0,036</td>
</tr>
<tr>
<td>13</td>
<td>Pencemaran</td>
<td>0,15</td>
<td>2</td>
<td>0,3</td>
<td>2</td>
<td>0,3</td>
<td>1</td>
<td>0,15</td>
<td>1</td>
<td>0,15</td>
</tr>
<tr>
<td>14</td>
<td>H. Herbivora</td>
<td>0,05</td>
<td>3</td>
<td>0,15</td>
<td>3</td>
<td>0,15</td>
<td>2</td>
<td>0,1</td>
<td>2</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td></td>
<td>2.596</td>
<td></td>
<td>2.596</td>
<td></td>
<td>2.196</td>
<td></td>
<td>1.766</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
I. Lokasi P.Pari
II. Kolasi P.Burung
III. Lokasi P.Tikus
IV. Lokasi P.Kongsi
<table>
<thead>
<tr>
<th>No</th>
<th>Nama</th>
<th>Umur</th>
<th>Pendapatan</th>
<th>Tingkat Pendidikan</th>
<th>Lokasi</th>
<th>Lama Tinggal</th>
<th>Jumlah Anggota Keluarga</th>
<th>Etnis</th>
<th>Pengalaman (Tahun)</th>
<th>Pengeluaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AYASHARI, A.H</td>
<td>41 tahun</td>
<td>Rp 800.000</td>
<td>SLA</td>
<td>P. Tikus</td>
<td>Sejak lahir</td>
<td>4</td>
<td>Asli</td>
<td>15 tahun</td>
<td>Rp 600.000</td>
</tr>
<tr>
<td>2</td>
<td>ZAENUDIN</td>
<td>37 tahun</td>
<td>Rp 900.000</td>
<td>SD</td>
<td>P. Tikus</td>
<td>2</td>
<td>4</td>
<td>Asli</td>
<td>5 tahun</td>
<td>Rp 800.000</td>
</tr>
<tr>
<td>3</td>
<td>LAAN</td>
<td>30 tahun</td>
<td>Rp 1.300.000</td>
<td>SD</td>
<td>P. Kongsi</td>
<td>30 tahun</td>
<td>4</td>
<td>Asli</td>
<td>10 tahun</td>
<td>Rp 800.000</td>
</tr>
<tr>
<td>4</td>
<td>SALEH</td>
<td>50 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Kongsi</td>
<td>20 tahun</td>
<td>4</td>
<td>Asli</td>
<td>10 tahun</td>
<td>Rp 500.000</td>
</tr>
<tr>
<td>5</td>
<td>MININ</td>
<td>32 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>Sejak lahir</td>
<td>3</td>
<td>Asli</td>
<td>10 tahun</td>
<td>Rp 500.000</td>
</tr>
<tr>
<td>6</td>
<td>MARJAN</td>
<td>40 tahun</td>
<td>Rp 600.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 450.000</td>
</tr>
<tr>
<td>7</td>
<td>SAIMAN</td>
<td>30 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>10 tahun</td>
<td>Rp 800.000</td>
</tr>
<tr>
<td>8</td>
<td>SAUDIN</td>
<td>50 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>6 tahun</td>
<td>Rp 450.000</td>
</tr>
<tr>
<td>9</td>
<td>SUHERMAN</td>
<td>25 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>10 tahun</td>
<td>Rp 800.000</td>
</tr>
<tr>
<td>10</td>
<td>SAIDJAN</td>
<td>47 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>6 tahun</td>
<td>Rp 450.000</td>
</tr>
<tr>
<td>11</td>
<td>ROMISANI</td>
<td>30 tahun</td>
<td>Rp 800.000</td>
<td>SLTP</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>12</td>
<td>HASANBINORSI</td>
<td>37 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>13</td>
<td>SURIN</td>
<td>35 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>14</td>
<td>M. AMIN</td>
<td>37 tahun</td>
<td>Rp 900.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>15</td>
<td>MATSANI</td>
<td>40 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>16</td>
<td>FAELANI</td>
<td>40 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>17</td>
<td>MAAMAT</td>
<td>30 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>18</td>
<td>MISIN</td>
<td>32 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>19</td>
<td>SAADJAN</td>
<td>37 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>20</td>
<td>SAADJAN, A.H</td>
<td>37 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>21</td>
<td>ROHANI</td>
<td>40 tahun</td>
<td>Rp 600.000</td>
<td>SLA</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>22</td>
<td>SAIMAT</td>
<td>30 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>23</td>
<td>MINGG</td>
<td>32 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>24</td>
<td>MUSTAQIMFIRIN</td>
<td>31 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>25</td>
<td>ALI HASAN</td>
<td>39 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>26</td>
<td>SAMSUL</td>
<td>40 tahun</td>
<td>Rp 600.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 700.000</td>
</tr>
<tr>
<td>27</td>
<td>ZAENUDIN, K</td>
<td>48 tahun</td>
<td>Rp 600.000</td>
<td>SLTP</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 500.000</td>
</tr>
<tr>
<td>28</td>
<td>ABD WAHID</td>
<td>45 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 500.000</td>
</tr>
<tr>
<td>29</td>
<td>SALURU</td>
<td>39 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 500.000</td>
</tr>
<tr>
<td>30</td>
<td>DIDI SUPRATMAN</td>
<td>29 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P. Pari</td>
<td>3</td>
<td>3</td>
<td>Asli</td>
<td>7 tahun</td>
<td>Rp 500.000</td>
</tr>
</tbody>
</table>
Sambungan Lampiran 4:

<table>
<thead>
<tr>
<th>No</th>
<th>Nama</th>
<th>Umur</th>
<th>Pendapatan</th>
<th>Tingkat Pendidikan</th>
<th>Lokasi</th>
<th>Lama Tinggal</th>
<th>Juml. Anggota Keluarga</th>
<th>Etnis</th>
<th>Pengalaman (tahun)</th>
<th>Pengeluaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>MACHMUD</td>
<td>40 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>40 tahun</td>
<td>7 BUGIS</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>CHAERUDIN</td>
<td>30 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>Sejak lahir</td>
<td>3 Asli</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>BASRI</td>
<td>35 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>20 tahun</td>
<td>5 BANTEN</td>
<td>14 tahun</td>
<td>Rp 900.000</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>ILHAM</td>
<td>40 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>20 tahun</td>
<td>4 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>MICANG</td>
<td>40 tahun</td>
<td>Rp 1.200.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>40 tahun</td>
<td>4 BANTEN</td>
<td>10 tahun</td>
<td>Rp 1.000.000</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SUKARTA</td>
<td>37 tahun</td>
<td>Rp 1.000.000</td>
<td>SLTP</td>
<td>P.Kongsi</td>
<td>Sejak lahir</td>
<td>3 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>MOH.BAKSI</td>
<td>39 tahun</td>
<td>Rp 1.200.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>idem</td>
<td>5 Asli</td>
<td>14 tahun</td>
<td>Rp 1.000.000</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>POING</td>
<td>43 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>idem</td>
<td>6 Asli</td>
<td>10 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>PIAN</td>
<td>36 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>4 Asli</td>
<td>10 tahun</td>
<td>Rp 600.000</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>RUSTINAH</td>
<td>40 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>5 BANTEN</td>
<td>14 tahun</td>
<td>Rp 900.000</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>ARJUN</td>
<td>30 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>3 Asli</td>
<td>10 tahun</td>
<td>Rp 500.000</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>NAPI</td>
<td>25 tahun</td>
<td>Rp 600.000</td>
<td>SLA</td>
<td>P.Kongsi</td>
<td>idem</td>
<td>4 Asli</td>
<td>5 tahun</td>
<td>Rp 450.000</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>MASDUKI</td>
<td>29 tahun</td>
<td>Rp 600.000</td>
<td>SLA</td>
<td>P.Kongsi</td>
<td>idem</td>
<td>1 Asli</td>
<td>6 tahun</td>
<td>Rp 300.000</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>HASANUDIN</td>
<td>27 tahun</td>
<td>Rp 900.000</td>
<td>SLA</td>
<td>P.Burung</td>
<td>idem</td>
<td>3 Asli</td>
<td>6 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>ARIF PUJIANTO</td>
<td>31 tahun</td>
<td>Rp 1.000.000</td>
<td>SLTP</td>
<td>P.Pari</td>
<td>idem</td>
<td>3 Asli</td>
<td>9 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>MADALI</td>
<td>40 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>20 tahun</td>
<td>6 BANTEN</td>
<td>10 tahun</td>
<td>Rp 900.000</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>HALIMIN</td>
<td>43 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>idem</td>
<td>6 Asli</td>
<td>10 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>HELMI</td>
<td>60 tahun</td>
<td>Rp 700.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>40 tahun</td>
<td>6 BANTEN</td>
<td>14 tahun</td>
<td>Rp 900.000</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>RAINAH</td>
<td>41 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>Sejak lahir</td>
<td>5 Asli</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ASMARUDIN</td>
<td>33 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>4 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>NASIR</td>
<td>46 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>idem</td>
<td>5 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>PADILA</td>
<td>60 tahun</td>
<td>Rp 1.300.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>30 tahun</td>
<td>4 JABAR</td>
<td>10 tahun</td>
<td>Rp 1.000.000</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>MUCHTARUDIN</td>
<td>43 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>Sejak lahir</td>
<td>5 Asli</td>
<td>10 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>MUSTAFA</td>
<td>45 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>20 tahun</td>
<td>6 BANTEN</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SURYADI</td>
<td>27 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>Sejak lahir</td>
<td>3 Asli</td>
<td>7 tahun</td>
<td>Rp 500.000</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SAMIUN</td>
<td>42 tahun</td>
<td>Rp 900.000</td>
<td>SD</td>
<td>P.Kongsi</td>
<td>idem</td>
<td>5 Asli</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>MASDUK</td>
<td>54 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>20 tahun</td>
<td>5 BANTEN</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>MAT LEBAR</td>
<td>62 tahun</td>
<td>Rp 1.200.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>Sejak lahir</td>
<td>3 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>MASTARI</td>
<td>47 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>4 Asli</td>
<td>10 tahun</td>
<td>Rp 600.000</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>MASNA</td>
<td>47 tahun</td>
<td>Rp 600.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>3 Asli</td>
<td>5 tahun</td>
<td>Rp 500.000</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>SIKAM</td>
<td>50 tahun</td>
<td>Rp 600.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>10 tahun</td>
<td>3 BANTEN</td>
<td>10 tahun</td>
<td>Rp 500.000</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Nama</td>
<td>Umur</td>
<td>Pendapatan</td>
<td>Tingkat Pendidikan</td>
<td>Lokasi</td>
<td>Lama Tinggal</td>
<td>Juml. Anggota Keluarga</td>
<td>Etnis</td>
<td>Pengalaman (tahun)</td>
<td>Pengeluaran</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>63</td>
<td>MANSUR</td>
<td>43 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>idem</td>
<td>7 Asli</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>UJUNG JABAR</td>
<td>40 tahun</td>
<td>Rp 1.000.000</td>
<td>SLA</td>
<td>P.Tikus</td>
<td>Sejak lahir</td>
<td>4 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>BAHARUDIN</td>
<td>45 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>idem</td>
<td>6 Asli</td>
<td>14 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>NURHAYAT</td>
<td>35 tahun</td>
<td>Rp 800.000</td>
<td>SLA</td>
<td>P.Pari</td>
<td>idem</td>
<td>4 Asli</td>
<td>14 tahun</td>
<td>Rp 600.000</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>MAMIT</td>
<td>30 tahun</td>
<td>Rp 600.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>5 Asli</td>
<td>10 tahun</td>
<td>Rp 400.000</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>RAUSIN</td>
<td>30 tahun</td>
<td>Rp 750.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>idem</td>
<td>4 Asli</td>
<td>10 tahun</td>
<td>Rp 600.000</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>RACHMAT</td>
<td>32 tahun</td>
<td>Rp 1.300.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>idem</td>
<td>3 Asli</td>
<td>10 tahun</td>
<td>Rp 600.000</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>MANAP</td>
<td>50 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Tikus</td>
<td>10 tahun</td>
<td>4 BANTEN</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>RATINAH</td>
<td>50 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>30 tahun</td>
<td>1 BANTEN</td>
<td>14 tahun</td>
<td>Rp 450.000</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>KOMAR</td>
<td>55 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>30 tahun</td>
<td>3 JABAR</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>SANURI</td>
<td>45 tahun</td>
<td>Rp 1.000.000</td>
<td>SD</td>
<td>P.Burung</td>
<td>Sejak lahir</td>
<td>6 Asli</td>
<td>14 tahun</td>
<td>Rp 800.000</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>M.NUR</td>
<td>50 tahun</td>
<td>Rp 1.200.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>15 tahun</td>
<td>4 BIMA</td>
<td>10 tahun</td>
<td>Rp 1.000.000</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>EMAT</td>
<td>35 tahun</td>
<td>Rp 800.000</td>
<td>SD</td>
<td>P.Pari</td>
<td>15 tahun</td>
<td>2 Asli</td>
<td>10 tahun</td>
<td>Rp 700.000</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 5. Nilai akar ciri dan vektor analisis karateristik sosial dan ekonomi budaya masyarakat pembudidaya rumput laut di P.Pari

<table>
<thead>
<tr>
<th>Akar ciri</th>
<th>Sumbu 1</th>
<th>Sumbu 2</th>
<th>Sumbu 3</th>
<th>Sumbu 4</th>
<th>Sumbu 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,3796</td>
<td>12,919</td>
<td>1,222</td>
<td>0,9743</td>
<td>0,7975</td>
</tr>
<tr>
<td></td>
<td>29,70%</td>
<td>16,10%</td>
<td>15,30%</td>
<td>12,20%</td>
<td>10,00%</td>
</tr>
<tr>
<td>Vektor ciri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umur</td>
<td>0,1432</td>
<td>-0,1616</td>
<td>0,6621</td>
<td>-0,0828</td>
<td>0,6203</td>
</tr>
<tr>
<td>Pendapatan</td>
<td>0,4191</td>
<td>-0,1334</td>
<td>-0,3735</td>
<td>-0,4813</td>
<td>-0,0192</td>
</tr>
<tr>
<td>Tingkat Pendidikan</td>
<td>-0,2074</td>
<td>0,0704</td>
<td>-0,5641</td>
<td>0,1701</td>
<td>0,7616</td>
</tr>
<tr>
<td>Lama Tinggal</td>
<td>-0,1604</td>
<td>-0,766</td>
<td>0,0779</td>
<td>0,0761</td>
<td>-0,0607</td>
</tr>
<tr>
<td>Jumlah Anggota</td>
<td>0,2868</td>
<td>-0,0344</td>
<td>-0,0876</td>
<td>0,8167</td>
<td>-0,1193</td>
</tr>
<tr>
<td>Keluarga</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etnis</td>
<td>-0,4045</td>
<td>-0,499</td>
<td>-0,1777</td>
<td>0,0281</td>
<td>-0,0631</td>
</tr>
<tr>
<td>Pengalaman</td>
<td>0,4732</td>
<td>-0,1264</td>
<td>0,0647</td>
<td>0,0281</td>
<td>0,105</td>
</tr>
<tr>
<td>Pengeluaran</td>
<td>0,5151</td>
<td>-0,3133</td>
<td>-0,2332</td>
<td>-0,1197</td>
<td>0,0646</td>
</tr>
</tbody>
</table>
Lampiran 6. Korelasi antara variabel dan sumbu utama

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Sumbu 1</th>
<th>Sumbu 2</th>
<th>Sumbu 3</th>
<th>Sumbu 4</th>
<th>Sumbu 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umur</td>
<td>0,2209</td>
<td>0,0488</td>
<td>-0,1836</td>
<td>0,0337</td>
<td>0,7319</td>
</tr>
<tr>
<td>Pendapatan</td>
<td>0,6464</td>
<td>0,4179</td>
<td>-0,1516</td>
<td>0,023</td>
<td>-0,4129</td>
</tr>
<tr>
<td>Tk.Pendidikan</td>
<td>-0,32</td>
<td>0,1024</td>
<td>0,08</td>
<td>0,0064</td>
<td>-0,6236</td>
</tr>
<tr>
<td>Lama tinggal</td>
<td>-0,2474</td>
<td>0,0612</td>
<td>-0,8706</td>
<td>0,758</td>
<td>0,0862</td>
</tr>
<tr>
<td>Jlm anggota klg</td>
<td>0,4424</td>
<td>0,1957</td>
<td>-0,0391</td>
<td>0,0015</td>
<td>-0,0968</td>
</tr>
<tr>
<td>Etnis</td>
<td>-0,6239</td>
<td>0,3893</td>
<td>-0,5672</td>
<td>0,3217</td>
<td>-0,1964</td>
</tr>
<tr>
<td>Pengalaman</td>
<td>0,73</td>
<td>0,5329</td>
<td>-0,1437</td>
<td>0,0206</td>
<td>0,0716</td>
</tr>
<tr>
<td>Pengeluaran</td>
<td>7,7947</td>
<td>0,6315</td>
<td>-0,3561</td>
<td>0,1268</td>
<td>-0,2578</td>
</tr>
</tbody>
</table>
Lampiran 7. Koordinat Individu pada Sumbu Utama dan Nilai Cosinusnya

<table>
<thead>
<tr>
<th>Observasi</th>
<th>Sumbu 1</th>
<th>Sumbu 2</th>
<th>Sumbu 3</th>
<th>Sumbu 4</th>
<th>Sumbu 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0,1527</td>
<td>0,0071</td>
<td>-0,4143</td>
<td>0,0525</td>
<td>0,6913</td>
</tr>
<tr>
<td>O2</td>
<td>0,1385</td>
<td>0,0039</td>
<td>-0,5731</td>
<td>0,0674</td>
<td>-0,9049</td>
</tr>
<tr>
<td>O3</td>
<td>1,4079</td>
<td>0,2592</td>
<td>-0,9458</td>
<td>0,1170</td>
<td>-1,4050</td>
</tr>
<tr>
<td>O4</td>
<td>1,1618</td>
<td>0,2860</td>
<td>0,7326</td>
<td>0,1141</td>
<td>0,4469</td>
</tr>
<tr>
<td>O5</td>
<td>-0,2816</td>
<td>0,0665</td>
<td>3,1263</td>
<td>0,8045</td>
<td>-0,2288</td>
</tr>
<tr>
<td>O6</td>
<td>-1,6714</td>
<td>0,5385</td>
<td>0,2231</td>
<td>0,0086</td>
<td>1,0763</td>
</tr>
<tr>
<td>O7</td>
<td>-2,4012</td>
<td>0,7736</td>
<td>0,5185</td>
<td>0,0351</td>
<td>0,4534</td>
</tr>
<tr>
<td>O8</td>
<td>0,0084</td>
<td>0,0000</td>
<td>-2,3393</td>
<td>0,6716</td>
<td>0,0386</td>
</tr>
<tr>
<td>O9</td>
<td>-2,0796</td>
<td>0,3955</td>
<td>2,0539</td>
<td>0,3858</td>
<td>0,2972</td>
</tr>
<tr>
<td>O10</td>
<td>0,5468</td>
<td>0,0417</td>
<td>-2,4039</td>
<td>0,8066</td>
<td>-0,1257</td>
</tr>
<tr>
<td>O11</td>
<td>-1,7286</td>
<td>0,5897</td>
<td>0,1094</td>
<td>0,0024</td>
<td>0,1489</td>
</tr>
<tr>
<td>O12</td>
<td>0,7517</td>
<td>0,1902</td>
<td>-0,7369</td>
<td>0,1828</td>
<td>-0,821</td>
</tr>
<tr>
<td>O13</td>
<td>-0,0960</td>
<td>0,0013</td>
<td>1,2396</td>
<td>0,2205</td>
<td>-0,2176</td>
</tr>
<tr>
<td>O14</td>
<td>-1,3922</td>
<td>0,3330</td>
<td>0,0090</td>
<td>0,0000</td>
<td>-1,3058</td>
</tr>
<tr>
<td>O15</td>
<td>1,4815</td>
<td>0,5401</td>
<td>-1,0323</td>
<td>0,2622</td>
<td>-0,1981</td>
</tr>
<tr>
<td>O16</td>
<td>-1,0737</td>
<td>0,3101</td>
<td>-0,0867</td>
<td>0,0020</td>
<td>0,5236</td>
</tr>
<tr>
<td>O17</td>
<td>-1,7286</td>
<td>0,5897</td>
<td>0,1094</td>
<td>0,0024</td>
<td>0,1489</td>
</tr>
<tr>
<td>O18</td>
<td>-1,1154</td>
<td>0,3932</td>
<td>-0,0544</td>
<td>0,0009</td>
<td>0,2328</td>
</tr>
<tr>
<td>O19</td>
<td>-1,7286</td>
<td>0,5897</td>
<td>0,1094</td>
<td>0,0024</td>
<td>0,1489</td>
</tr>
<tr>
<td>O20</td>
<td>0,7253</td>
<td>0,0472</td>
<td>-0,6886</td>
<td>0,0419</td>
<td>-2,4767</td>
</tr>
<tr>
<td>O21</td>
<td>-1,7133</td>
<td>0,2812</td>
<td>0,1304</td>
<td>0,0016</td>
<td>-1,2160</td>
</tr>
<tr>
<td>O22</td>
<td>-2,3682</td>
<td>0,4758</td>
<td>0,3265</td>
<td>0,0900</td>
<td>-0,5907</td>
</tr>
<tr>
<td>O23</td>
<td>-0,2407</td>
<td>0,0198</td>
<td>-0,2193</td>
<td>0,0164</td>
<td>-1,3863</td>
</tr>
<tr>
<td>O24</td>
<td>0,8266</td>
<td>0,1262</td>
<td>-0,8362</td>
<td>0,1292</td>
<td>-0,5728</td>
</tr>
<tr>
<td>O25</td>
<td>0,1527</td>
<td>0,0071</td>
<td>-0,4143</td>
<td>0,0525</td>
<td>0,6913</td>
</tr>
</tbody>
</table>
Sambungan lampiran 7.

<table>
<thead>
<tr>
<th>Observasi</th>
<th>Sumbu 1</th>
<th>Sumbu 2</th>
<th>Sumbu 3</th>
<th>Sumbu 4</th>
<th>Sumbu 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>O26</td>
<td>-1.7462</td>
<td>0.4096</td>
<td>0.3224</td>
<td>0.8281</td>
<td>0.7930</td>
</tr>
<tr>
<td>O27</td>
<td>-2.3876</td>
<td>0.4807</td>
<td>-1.1045</td>
<td>0.1145</td>
<td>1.2079</td>
</tr>
<tr>
<td>O28</td>
<td>0.9431</td>
<td>0.1761</td>
<td>-0.9677</td>
<td>0.1854</td>
<td>0.00337</td>
</tr>
<tr>
<td>O29</td>
<td>-1.7462</td>
<td>0.4906</td>
<td>0.3224</td>
<td>0.8281</td>
<td>0.7930</td>
</tr>
<tr>
<td>O30</td>
<td>0.8253</td>
<td>0.1567</td>
<td>-0.8234</td>
<td>0.1579</td>
<td>0.3838</td>
</tr>
<tr>
<td>O31</td>
<td>-0.4605</td>
<td>0.1168</td>
<td>-0.2505</td>
<td>0.0346</td>
<td>0.6074</td>
</tr>
<tr>
<td>O32</td>
<td>2.4476</td>
<td>0.8340</td>
<td>0.1597</td>
<td>0.0036</td>
<td>0.2262</td>
</tr>
<tr>
<td>O33</td>
<td>2.8121</td>
<td>0.5695</td>
<td>1.6500</td>
<td>0.1961</td>
<td>-0.5988</td>
</tr>
<tr>
<td>O34</td>
<td>2.6525</td>
<td>0.6381</td>
<td>1.8267</td>
<td>0.3026</td>
<td>-0.4891</td>
</tr>
<tr>
<td>O35</td>
<td>-2.5025</td>
<td>0.4749</td>
<td>0.6710</td>
<td>0.0341</td>
<td>-1.4505</td>
</tr>
<tr>
<td>O36</td>
<td>-1.2496</td>
<td>0.3422</td>
<td>0.2501</td>
<td>0.0184</td>
<td>0.3729</td>
</tr>
<tr>
<td>O37</td>
<td>-0.9988</td>
<td>0.3561</td>
<td>-0.1860</td>
<td>0.0123</td>
<td>0.7718</td>
</tr>
<tr>
<td>O38</td>
<td>0.8683</td>
<td>0.2869</td>
<td>-0.8685</td>
<td>0.2891</td>
<td>-0.8280</td>
</tr>
<tr>
<td>O39</td>
<td>-2.3876</td>
<td>0.4897</td>
<td>-1.1045</td>
<td>0.1048</td>
<td>0.1145</td>
</tr>
<tr>
<td>O40</td>
<td>0.9555</td>
<td>0.0029</td>
<td>-0.5280</td>
<td>0.0871</td>
<td>-0.2361</td>
</tr>
<tr>
<td>O41</td>
<td>-0.1065</td>
<td>0.0023</td>
<td>-0.5638</td>
<td>0.0643</td>
<td>-1.5264</td>
</tr>
<tr>
<td>O42</td>
<td>0.5067</td>
<td>0.0401</td>
<td>-0.7276</td>
<td>0.0826</td>
<td>-1.4426</td>
</tr>
<tr>
<td>O43</td>
<td>0.9431</td>
<td>0.1761</td>
<td>-0.9677</td>
<td>0.1854</td>
<td>-0.0337</td>
</tr>
<tr>
<td>O44</td>
<td>2.4906</td>
<td>0.5963</td>
<td>0.1146</td>
<td>0.0013</td>
<td>-0.4426</td>
</tr>
<tr>
<td>O45</td>
<td>-0.3838</td>
<td>0.0126</td>
<td>2.9505</td>
<td>0.7385</td>
<td>1.3444</td>
</tr>
<tr>
<td>O46</td>
<td>0.6911</td>
<td>0.0512</td>
<td>-0.4789</td>
<td>0.0246</td>
<td>0.5270</td>
</tr>
<tr>
<td>O47</td>
<td>0.8418</td>
<td>0.0657</td>
<td>-0.4143</td>
<td>0.0616</td>
<td>-0.8277</td>
</tr>
<tr>
<td>O48</td>
<td>0.8883</td>
<td>0.2890</td>
<td>-0.8885</td>
<td>0.2861</td>
<td>-0.2820</td>
</tr>
<tr>
<td>O49</td>
<td>1.3944</td>
<td>0.1276</td>
<td>-2.8436</td>
<td>0.5305</td>
<td>0.0766</td>
</tr>
<tr>
<td>O50</td>
<td>-0.4605</td>
<td>0.1168</td>
<td>-0.2505</td>
<td>0.0346</td>
<td>0.6074</td>
</tr>
<tr>
<td>O51</td>
<td>2.4476</td>
<td>0.8340</td>
<td>0.1597</td>
<td>0.0036</td>
<td>0.2262</td>
</tr>
<tr>
<td>O52</td>
<td>-2.4012</td>
<td>0.7736</td>
<td>0.5185</td>
<td>0.0361</td>
<td>0.4534</td>
</tr>
<tr>
<td>Observasi</td>
<td>Sumbu 1</td>
<td>Sumbu 2</td>
<td>Sumbu 3</td>
<td>Sumbu 4</td>
<td>Sumbu 5</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>O56</td>
<td>2.6071</td>
<td>0.5980</td>
<td>-0.0169</td>
<td>0.0000</td>
<td>0.0965</td>
</tr>
<tr>
<td>O57</td>
<td>0.7564</td>
<td>0.0724</td>
<td>0.4654</td>
<td>0.0274</td>
<td>1.4307</td>
</tr>
<tr>
<td>O58</td>
<td>2.7861</td>
<td>0.7190</td>
<td>1.6951</td>
<td>0.2694</td>
<td>0.0700</td>
</tr>
<tr>
<td>O59</td>
<td>0.1527</td>
<td>0.0071</td>
<td>-0.0657</td>
<td>0.0525</td>
<td>0.6913</td>
</tr>
<tr>
<td>O60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O61</td>
<td>-3.0408</td>
<td>0.6524</td>
<td>0.7256</td>
<td>0.0382</td>
<td>-1.2862</td>
</tr>
<tr>
<td>O62</td>
<td>0.1970</td>
<td>0.0051</td>
<td>-0.4722</td>
<td>0.0293</td>
<td>-0.9371</td>
</tr>
<tr>
<td>O63</td>
<td>0.9416</td>
<td>0.0657</td>
<td>-0.4143</td>
<td>0.0816</td>
<td>-0.9277</td>
</tr>
<tr>
<td>O64</td>
<td>0.7517</td>
<td>0.1902</td>
<td>-0.7369</td>
<td>0.1828</td>
<td>-0.8210</td>
</tr>
<tr>
<td>O65</td>
<td>2.8121</td>
<td>0.5695</td>
<td>1.6500</td>
<td>0.1961</td>
<td>-0.5988</td>
</tr>
<tr>
<td>O66</td>
<td>2.6525</td>
<td>0.5381</td>
<td>1.8267</td>
<td>0.3026</td>
<td>-0.4891</td>
</tr>
<tr>
<td>O67</td>
<td>2.4966</td>
<td>0.5983</td>
<td>0.1146</td>
<td>0.0013</td>
<td>-0.4426</td>
</tr>
<tr>
<td>O68</td>
<td>0.8663</td>
<td>0.2890</td>
<td>-0.8886</td>
<td>0.2891</td>
<td>-0.2820</td>
</tr>
<tr>
<td>O69</td>
<td>0.8663</td>
<td>0.2890</td>
<td>-0.8886</td>
<td>0.2891</td>
<td>-0.2820</td>
</tr>
<tr>
<td>O70</td>
<td>0.0855</td>
<td>0.0029</td>
<td>-0.5280</td>
<td>0.0871</td>
<td>-0.2361</td>
</tr>
<tr>
<td>O71</td>
<td>-0.8102</td>
<td>0.0746</td>
<td>1.6812</td>
<td>0.3210</td>
<td>-0.2039</td>
</tr>
<tr>
<td>O72</td>
<td>1.4815</td>
<td>0.5041</td>
<td>-1.0323</td>
<td>0.2622</td>
<td>-0.1981</td>
</tr>
<tr>
<td>O73</td>
<td>0.9431</td>
<td>0.1761</td>
<td>-0.8677</td>
<td>0.1854</td>
<td>-0.0337</td>
</tr>
<tr>
<td>O74</td>
<td>2.1589</td>
<td>0.5047</td>
<td>1.8589</td>
<td>0.3752</td>
<td>-0.0139</td>
</tr>
<tr>
<td>O75</td>
<td>-0.5770</td>
<td>0.1529</td>
<td>-0.1190</td>
<td>0.0065</td>
<td>0.0684</td>
</tr>
</tbody>
</table>
Lampiran 8. Analisa Usaha Budidaya Rumput Laut di P. Pari

<table>
<thead>
<tr>
<th>A. INVESTASI</th>
<th>Jumlah</th>
<th>Harga</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Wadah budidaya</td>
<td>Saat</td>
<td>Saat</td>
<td>(Rp)</td>
</tr>
<tr>
<td>a. Talii Blang (u.t 1 tahun)</td>
<td>Kg</td>
<td>40</td>
<td>5.000</td>
</tr>
<tr>
<td>b. Talii Pemenlang (u.t 1 tahun)</td>
<td>Gulgung</td>
<td>10</td>
<td>24.500</td>
</tr>
<tr>
<td>c. Talii untuk ikat (u.t 1 tahun)</td>
<td>Gulgung</td>
<td>3</td>
<td>15.000</td>
</tr>
<tr>
<td>d. Pelampung (jerigen) (u.t 1 tahun)</td>
<td>Bush</td>
<td>4</td>
<td>3.000</td>
</tr>
<tr>
<td>e. Botol aqua (u.t 1 tahun)</td>
<td>Bush</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>f. Perahu/sampan (u.t 1 tahun)</td>
<td>Bush</td>
<td>1</td>
<td>1.500.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. BIAYA</th>
<th>Jumlah</th>
<th>Sub Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Tetap</td>
<td></td>
<td>2.022.000</td>
</tr>
<tr>
<td>a. Penyusutan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Talii Blang (u.t 1 tahun)</td>
<td></td>
<td>200.000</td>
</tr>
<tr>
<td>ii. Talii Pemenlang (u.t tahun)</td>
<td></td>
<td>245.000</td>
</tr>
<tr>
<td>iii. Talii untuk ikat (u.t 1 tahun)</td>
<td></td>
<td>46.000</td>
</tr>
<tr>
<td>iv. Pelampung (jerigen) (u.t tahun)</td>
<td></td>
<td>12.000</td>
</tr>
<tr>
<td>v. Botol aqua (u.t tahun)</td>
<td></td>
<td>20.000</td>
</tr>
<tr>
<td>vi. Perahu/sampan (u.t 5 tahun)</td>
<td></td>
<td>300.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2... Variabel</th>
<th></th>
<th>822.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Penyiapan talii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pembersihan talii (Rp 250/talii x20)</td>
<td>Saat</td>
<td>1.200</td>
</tr>
<tr>
<td>b. Penanaman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikat benih (Rp 250/talii x 200 x 6)</td>
<td>Saat</td>
<td>1.200</td>
</tr>
<tr>
<td>Bahan bakar (50 l x 6 x Rp 1.000)</td>
<td>Liter</td>
<td>300</td>
</tr>
<tr>
<td>c. Pemeliharaan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahan bakar (50 l x 6 x Rp 1000)</td>
<td>Liter</td>
<td>300</td>
</tr>
<tr>
<td>d. Pemanenan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 orang, 2 Rp 50.000,-</td>
<td>Ton</td>
<td>154,36</td>
</tr>
<tr>
<td>Bahan bakar (501 x 6 x Rp 1.000)</td>
<td>Liter</td>
<td>300</td>
</tr>
<tr>
<td>e. Harga bitit (100 gr/ talii x 50 x 200 x 6)</td>
<td>Kg</td>
<td>6.000</td>
</tr>
</tbody>
</table>

| Jumlah | 13.751.800 |
| Jumlah total | 14.583.800 |

<table>
<thead>
<tr>
<th>C. PENERIMAAN</th>
<th>Jumlah</th>
<th>(Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Panen Rumput Laut</td>
<td>2544.8 gr x 200 talii x 30 talii x 6 kali</td>
<td>15.436,10</td>
</tr>
<tr>
<td>D. KEUNTUNGAN SETAHUN</td>
<td></td>
<td>31.724.700</td>
</tr>
</tbody>
</table>

Keuntungan 1 x Panen | 5.287.450 |
<table>
<thead>
<tr>
<th>Faktor Internal</th>
<th>Bobot</th>
<th>Rating</th>
<th>Total Skoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kekuatan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Potensi Biofisik</td>
<td>0,3</td>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td>2. Potensi Sumberdaya</td>
<td>0,25</td>
<td>3</td>
<td>0,75</td>
</tr>
<tr>
<td>Manusia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Potensi Sumberdaya</td>
<td>0,1875</td>
<td>3</td>
<td>0,5625</td>
</tr>
<tr>
<td>Alam</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Bibit dari Lokasi</td>
<td>0,0625</td>
<td>3</td>
<td>0,1875</td>
</tr>
<tr>
<td>Sendiri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kelemahan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Adanya Hama Penyakit</td>
<td>0,0625</td>
<td>1</td>
<td>0,0625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Modal Usaha Rendah</td>
<td>0,1875</td>
<td>1</td>
<td>0,1875</td>
</tr>
<tr>
<td>3. Teknologi Rendah</td>
<td>0,0625</td>
<td>2</td>
<td>0,125</td>
</tr>
<tr>
<td>4. Kemitraan Rendah</td>
<td>0,0125</td>
<td>2</td>
<td>0,025</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1</td>
<td></td>
<td>2,8</td>
</tr>
<tr>
<td>Faktor Eksternal</td>
<td>Bobot</td>
<td>Rating</td>
<td>Total Skoring</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>Peluang</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Potensi Pasar</td>
<td>0.3</td>
<td>3</td>
<td>0.9</td>
</tr>
<tr>
<td>2. Kebijakan Pemerintah</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Ancaman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Pencemaran</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>2. Pasar Global</td>
<td>0.2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1. pH 6,8 - 8,5</td>
<td></td>
<td></td>
<td>8 - 8,5</td>
</tr>
<tr>
<td>2. O (ppm) > 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Salinitas % 32 - 36</td>
<td></td>
<td></td>
<td>30 - 35</td>
</tr>
<tr>
<td>4. Arus (cm/det) 30 - 60</td>
<td></td>
<td></td>
<td>33 - 66</td>
</tr>
<tr>
<td>5. Kecerahan cerah/jernih</td>
<td></td>
<td></td>
<td>cerah/jernih</td>
</tr>
<tr>
<td>6. Substrat batu karang</td>
<td></td>
<td></td>
<td>karang, pasir</td>
</tr>
<tr>
<td>7. NH < 0 . 30 ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. PO luwes</td>
<td></td>
<td></td>
<td>sedang-kaya</td>
</tr>
<tr>
<td>9. NO luwes</td>
<td></td>
<td></td>
<td>sedang-kaya</td>
</tr>
<tr>
<td>10. Kedalaman (cm) 30 - 50 (surut)</td>
<td></td>
<td></td>
<td>60 - 210</td>
</tr>
<tr>
<td>11. Suhu (c) 24 - 30</td>
<td></td>
<td></td>
<td>25 - 33</td>
</tr>
<tr>
<td>12. Metode apung, dasar</td>
<td></td>
<td></td>
<td>apung, dasar</td>
</tr>
<tr>
<td>13. Gelombang terlindung</td>
<td></td>
<td></td>
<td>terlindung</td>
</tr>
<tr>
<td>14. Mintakat goba, terumbu</td>
<td></td>
<td></td>
<td>terumbu</td>
</tr>
<tr>
<td>15. Pencemaran bebas cemar</td>
<td></td>
<td></td>
<td>bebas cemar</td>
</tr>
<tr>
<td>16. Cahaya</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan

<table>
<thead>
<tr>
<th>Kesesuaian Lahan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokasi Sesuai</td>
</tr>
<tr>
<td>(P. Tikus, P. Kongs)</td>
</tr>
<tr>
<td>Gosong karang</td>
</tr>
<tr>
<td>Lokasi Sangat Sesuai</td>
</tr>
<tr>
<td>(P. Pasir, P. Besar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peta Laut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulau (island)</td>
</tr>
<tr>
<td>Laut</td>
</tr>
</tbody>
</table>